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A new explicit algorithm based on the computational singular perturbation (CSP)
method is presented. This algorithm is specifically designed to solve stiff problems,
and its performance increases with stiffness. The key concept in its structure is the
splitting of the fast from the slow time scales in the problem, realized by embedding
CSP concepts into an explicit scheme. In simple terms, the algorithm marches in
time with only the terms producing the slow time scales, while the contribution of
the terms producing the fast time scales is taken into account at the end of each
integration step as a correction. The new algorithm is designed for the integration of
stiff systems of PDEs by means of explicit schemes. For simplicity in the presentation
and discussion of the different features of the new algorithm, a simple test case is
considered, involving the auto-ignition of a methane/air mixture behind a normal
shock wave, which is described by a system of ODEs. The performance of the new
algorithm (accuracy and computational efficiency) is then compared with the well-
known LSODE package. Its merits when used for the solution of systems of PDEs
are discussed. Although when dealing with a stiff system of ODESs the new algorithm
is shown to provide equal accuracy with that delivered by LSODE at the cost of
higher execution time, the results indicate that its performance could be superior
when facing a stiff system of PDES. © 2001 Academic Press
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1. INTRODUCTION

Much attention has recently been devoted to the inclusion of detailed chemical kine
mechanisms in the simulation of problems in the fields of combustion, hypersonic floy
and pollutant control. However, the extremely fast time-scales introduced by detai
chemistry make the set of governing equations stiff and their numerical solution p
hibitively expensive.

The most successful attempts to cope with stiffness have been so far based on imj
schemes. Such a scheme is the family of multistep, variable order, variable integration
implicit BDF methods of Gear, Hindmarsh and Brown [1, 48] (available in the LSODE ge
eral purpose package), which is among the most widely used technique to solve stiff ordir
differential equations (ODES). See for example the CHEMKIN [2, 3] and LSENS [4] pac
ages. Reacting flows in the hypersonic regime [5-7], reactive mixing layers [8], flames |
detonations [10—12] and nonequilibrium nozzle flows [13] are modeled by systems of |
tial differential equations (PDEs) and are frequently solved by a local implicit treatme
of the stiff source terms according to theethod of linesaand thetime-stepor operator
splitting approach. Preconditioning techniques are also used to solve steady state prok
efficiently [11, 14, 52].

The implicit treatment of the stiff terms provides solutions which are accurate at t
slow scales and stable at the fast scales [11, 15]. However, a significant fraction of the 1
computational time is devoted to solution of the resulting nonlinear systems of algebt
equations, the dimension of which is proportional to the number of chemical species in
detailed mechanism. This is the reason why the relatively limited effort required to d
with simple kinetic mechanisms, such as the one which describes air dissociation in
hypersonic regime, quickly grows dramatically in the modeling of combustion of compls
hydrocarbon mixtures. This circumstance prompted the search for reduced chemical m
anisms obtained by applying the steady-state and patrtial equilibrium approximations to
detailed mechanisms [16-22].

In contrast, explicit schemes are simpler to implement; they provide solutions of hic
order accuracy at all scales and do not require the solution of algebraic systems at
integration step. However, their stability requirements force the maximum integration s
to be of the order of the fastest (smallest) time-scale. When the problem is stiff, the re
between the fastest scale and the scale by which the process evolves may grow very
(i.e., several orders of magnitude). In such a case, the calculations might progress usel
at a very slow pace.

There have been several attempts to design explicit schemes able to deal with stiff p
lems. Among these, we can cite the contributions of Lebedev [23] and Medovikov [2:
who developed a family of stabilized Runge—Kutta multistage schemes, the Runge—Ku
Chebychev (RKC) schemes, possessing extended real negative stability intervals, an
review article of Verwer [25] on explicit schemes for stiff problems. The stability limits o
RKC schemes is roughly proportional to the square of the number of stages [25]. Theref
higher stability limits results in higher CPU costs. As a consequence, the RKC schet
are efficient only when employed for the solution of mildly stiff problems. In contrast, fc
severely stiff problems, i.e. when the driving time-scale is several orders of magnitude slo
than the fast ones, the efficiency of the explicit RKC schemes equals that of the implicit or

Here, a new explicit algorithm is presented which circumvents the stability limitatios
of the standard and the extended stability explicit schemes by resorting to the conc
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embodied in the computational singular perturbation (CSP) method. The original id¢
and the mathematical background on which the CSP method is based were present
Refs. [26—28, 40]. Successful application of CSP in a number of problems involving chel
cal kinetics, combustion, and optimal control are demonstrated in Refs. [29—-32] and [33-
42], respectively.

Given a stiff system of ODESs, the steps to construct, on the basis of CSP concepts
efficient explicit scheme able to deal with very stiff problems are: (i) to split the contributior
of the slow and fast time-scales, (ii) to proceed to the next point in time by integratil
numerically the slow scales only, and (iii) to separately account for the contribution of t
fast scales at the end of each integration step by means of an algebraic correction tern

With stiffness removed, the scheme employed for the integration of the terms, whi
contribute the slow scale, can be of explicit type. A fourth-order four-stage Runge—Ku
scheme is used in the computations reported in this paper. Of course, any other varian
in principle be used.

Because of this specific feature, the new algorithm can be describedirag-acale
splitting explicit schemeo emphasize its peculiarity with respect to the conventiong
operatoror time-step splitting explicit/implicéchemes.

The development of this new explicit, time-scale splitting algorithm is especially dot
in view of future applications to systems of stiff PDESs, the stiffness of which is maini
related to the presence of a source term. Although standard time-step splitting approa
provide a consistent way of treating the nonlinear coupling between the spatial oper:
and the source term, they do not provide (and therefore cannot explicitly take advant
of) any information on how the slow spatial scales interact with the fast and slow tin
scales originated by the source term [36]. In contrast, the proposed time-scale split
allows coupling the slow spatial scales directly to the slow time scales originated by 1
source term, when the fast time-scales are related to the source term only. Such a treat
of a stiff problem by an explicit algorithm eliminates the need for implicit or multistej
schemes. As a result, the solution of nonlinear systems at each integration step and the
storage required are avoided. The time scale splitting also provides an estimate of the c
of magnitude of the dominant time scale, which can be used both to adjust (maximi
the integration step for time marching and to set the proper spatial discretization (c
resolution) in a PDE problem without resorting to an error control strategy [36].

Although the new time-scale splitting algorithm will be ultimately devoted to solv
stiff systems of PDESs, the presentation of its specific features and the discussion o
performance can be made much simpler when it is employed for the solution of a s
system of ODESs. As a test problem, we selected the auto-ignition process occurring bel
a normal, steady shock wave. The combustible mixture considered is methane/air wt
detailed kinetic mechanism involves 49 species and 260 reactions. The performance o
new algorithm—in terms of accuracy and computational efficiency—will be compared wi
that provided by the very well-known and used LSODE package. The numerical resi
presented are therefore devoted to demonstrate how and under what circumstance
new algorithm works and delivers a satisfactory performance. An attempt to compare
performance of the new scheme to that deliverable by LSODE when dealing with proble
involving PDEs will also be presented.

The structure of the manuscript is as follows. First, a brief outline of the CSP meth
will be presented on the basis of which the explicit, time-scale splitting algorithm wi
be developed. Next, the governing equations for the physical problem under examina
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will be stated. Finally, the performance of the new explicit algorithm will be reported ar
compared with that of the LSODE package.

2. IMPLICIT VS EXPLICIT SCHEMES FOR STIFF PROBLEMS
Consider the nonlinear initial value problem

dy

at ay), YO =Yy, 1)

wherey and g are N-dimensional (column) vectors. Suppose that, throughout the tirr
domain of interest, the Jacobian matﬁ-}<= dg /dy; hasM eigenvalues (not necessarily
real):

e whose magnitude is much larger than the remaiming M;
¢ which have negative real parts;

e which are located away from the imaginary axis;

¢ which are ordered according to their magnitude:

X1l > - > [Am| > [Amt1] > -+ > [An]. (2

If the time domain of interest is of the order of the reciprocal of(tkle+ 1)-th eigenvalue,
then Eq. (1) exhibits a boundary-layer type of stiffness.

To illustrate, by a simple example, how and why an implicit scheme is successful
handling this type of stiff problem, whereas a conventional explicit scheme is bound to f
assume that the source tegwof Eq. (1) is linear. Thus, Eqg. (1) reads as

dy
=9 YO =Y. 3
whereAis an(N x N) constant matrix fully populated. For simplicity, it is assumed tha
all its eigenvalues are distinct, real, positive, and ordered as in Eq. (2). The exact solu

of the linear problem is
y(t) = (aue™'b" + - - +aue M)y,
+ (ampre Pt 4 aye N )y, (4)
where the column vecta; and the row vectob' (i = 1, N) are the right and left eigen-

vectors of A, respectively, and the two terms on the RHS of Eq. (4) correspond to moc
below and above the driving time scal¢ defined by the relation

At~ O(my1) > OO (5)

Now, consider the numerical solution obtained by approximating Eq. (3) first by means
a first-order backward explicit scheme and then by a first-order backward implicit schei
It can be shown that the explicit scheme yields the solution

133 Al ¢ int

Inj1— i
Yor(l) = {ale a leabt4 ... +aye s te'ft pM }yo

In (1—Ap41 AD In (1—Ap At

+{aM+1e a ‘bM+1+---+aNeT‘bN}yo, (6)
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whereas the implicit scheme yields

—In (1+11 A 0 (g AD
yim(t) = {aleTtbl+...+aMe xt th }yo
—In (L4241 AD InanAY
+ {aM_,_le#th-‘rl_i_...+aNeTth}yo‘ (7)

An estimate of the stability interval width required by an explicit scheme to solve Eq. (
over a time interval of the order of the reciprocal of ttM + 1)-th eigenvalue is given by
the product

Z = [M]|At = |Aq]/|Amyal- 8)

However, the simple first-order backward explicit scheme can only afford to integre
Eq. (1) withz < 1, which yieldsAt < (|A1])~%; otherwise the firsbl components of Eq. (6)
will become unstable (they will grow exponentially). In a stiff problein, 1| can be several
orders of magnitude smaller théky |, thus justifying the quest for explicit schemes with
an extraordinary large stability limit, that is with very larggalues.

In contrast, the firdl components of Eq. (7) are always stable (they decay exponentially
since the first-order backward implicit schemedistable. The remaininy — M terms in
both Egs. (6) and (7) are stable and predict with the same accuracy the similar compon
of the exact solution (4).

This simple example shows that if the selection of integration step is based on the Ic
characteristic time scale, individuated by the inversg.gf, 1|, the more efficient explicit
scheme causes an exponential growth of the solution components related to the fast
scales.

However, at the time period of interest, these components, being exponentially small
not contribute to the overall solution of the original problem. Therefore, it is tempting f
devise a strategy aimed at making the fast time-scales disappear from the problem w
they become exhausted, and the evolution of the system depends on the slow modes
This way, the numerical solution acquired with an explicit scheme might be made mq
efficient than if an implicit scheme was employed.

The next sections will illustrate how the computational singular perturbation meth
allows one to pursue this strategy for nonlinear problems as well.

3. STIFF PROBLEMS BY THE CSP METHOD

The CSP method is based on the ability to split thedimensional domain of in
two subdomains, each of which exhibits certain characteristics. One subdomidin is
dimensional, contains the fast time scales, and is responsible for the rapid changes
solution might exhibit. The other subdomairNs— M dimensional, contains the slow time
scales, and is responsible for the smooth behavior of the solution. Wheas through
a period of rapid changes (inner region or boundary layer), the component of the velo
vectorgin the fast subdomain is significant. However, it becomes negligible wbghibits
a smooth behavior (outer region).

As the system evolves in time, the two subdomains “rotate.” CSP follows the movem:
of the two subdomains and inspects the projectiog iofto the fast subdomain. When the
trajectory leaves the inner region, this projection becomes exponentially small. CSP t
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provides a simplified system of equations which produces an approximation of the “exe
solution but contains no fast time scales. This way, the fast time scales, which cause
numerical difficulties, are retained only when needed and are discarded when they hav
effect on the evolution of the system. This process is done in such a way that the comp
solution stays within the desired accuracy.

To split the source terminto a fast and a slow component, thRdomain must be resolved
in an appropriate manner. L&Y be the domain of and fy(t), ..., an(t)] be a set of
column basis vectors which sp&\ at timet. The corresponding set of orthogonal row
vectors is denoted ab¥(t), ..., bN(t)]. We assume that the firt basis vectors span the
fast subdomain. The vectgican now be expanded in terms of these sets of basis vectors

dy & -
o Sar far
i=1 r=1

s=M+1

where fi=b' - gis the “amplitude” ofg in the “direction” of the basis vecta;, and the
indicesr ands will denoter apid andslow modes, respectively. The projectiongbnto
the fast subdomain being small can be expressed byltegquations (of partial equilibrium
state relations)

ff~0 r=1M. (10)

The M equations (10) describe the manifold in the spacgai which the trajectory in
the outer region moves according to the equation

dy N s
i Z asfs. (11)

s=M+1

In this simplified form, the fast modes are absent so that only the slow time-sca
are present. As a result, the integration with an explicit scheme can advance with la
integration steps. In order for the integration to be stable, this integration step must b
the order of the reciprocal of the magnitude of the largest olNhe M slow eigenvalues
of J (Eq. (5)). More details about the CSP method can be found in the Refs. [37-39].

4. STEPS TOWARD THE TIME-SCALE SPLITTING ALGORITHM

There are three basic steps to build the new time-scale splitting, explicit algorith
(i) identification of the numbeM of exhausted modes at a given time, (ii) construction o
the CSP basis vectors and (iii) integration of the stiff ODE system according to a time-sc
explicit algorithm.

4.1. Detection of the Exhausted Fast Modes

The criterion is the following. Let us first introduce an error vegiqg, built on the basis
of the solution vectoy, as

ylzrror = 6iellyil + Egbw = AN (12)
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whereel, and el are the maximum relative and absolute errors onittie variable,
respectively. The numbavl of fast modes which, within the limits of accuracy specified
by the given error vector, are considered exhausted is defined as the largest integer |

between 1 andN which satisfies the inequality

M
tM+1D)) af]
j=1

< Yerror (13)

wheret (M + 1), the time scale related to th#(+ 1)-th CSP mode, is defined as

M +1) = ’ (14)

A(M+1)"

The inequality (13) guarantees that the trajectory remains close to the manifold wit|
specified bounds and is not diverted far from it by marching in time according to tl
simplified nonstiff Eq. (11). In fact, the omission of thé fast modes in the integration
along one time step introduces a local error which can be estimated as

M
Er=O<AtZajfj>. (15)

j=1
Given the condition (13), it follows that

o Aty
E = O<7r(M - 1)). (16)

4.2. Construction of the Basis Vectors

The algorithm for the construction of the basis vecerandb’ (r = 1, M), which are
desired to define the fast subdomain in the problem, is provided by the recursive formt
reported here below from Refs. [26-28],

-1
A +1) = [— d Ad(tsl) 4 A(sl)} { B {— d /Z(tsl) 43 A(sl)]} B,J = const (17)

-1
B+ 1) = {{di(fg) + B(SQ)J} A} [di(tsz) + B(SQ)J} A, J = const (18)

where the matrices andB collect the right and lefM fast basis vectors, respectively,
A=(ar --- aw); B=(b' .. b")T

and the initial guesse&(0) andB(0) are, in principle, arbitrary matrices. The refinements
(17) and (18) are not coupled to each other; thatis, the numisgrefinements might not be
equal to the number @-refinements. Independent of the numbes,einds,-refinements,
the resulting vectors produce an orthonormal basis.

The larger the number of thleg-refinements (Eq. 17) arsg-refinements (Eq. 18) the more
accurate the approximation of the fast subdomain by the basis vectmgb' (r = 1, M).
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In fact, thes;(s,)-refinements tend to purify the slow (fast) part in the RHS of Eq. (9) fron

the fast (slow) time scales. Each of the s,-refinements becomes more effective as the
time-scale separation, defined as

AMM +1)

=|— 19

‘ AMM) | (19)

becomes more wide.

Regarding the simplified problem, Eq. (11), theefinements tend to improve its stability
while the s,-refinements tend to improve the accuracy of the approximate solution
allowing the exponential decay of the fast amplitudégr = 1, M) to smaller values.

The presence of the time derivatives in Egs. (17 and 18) signifies the fact that the
subdomain rotates with time. It is only when the problem is linear, g.e:, Ay, that the
fast subdomain is fixed with time, being defined by tfleeigenvectors of the constant
matrix A, which correspond to it/ largest eigenvalues. In such a case, when trying t
approximate the fast subdomain the time derivative terms can be omitted from Eqgs. (17)
(18) without any loss in stability or accuracy, both being improved with the number of tl
s ands,-refinements. The simplified recursive formulas constitute then the block-pow
method for approximating the space spanned byMhiast eigenvectors [37-39, 44].

When the problem is nonlinear, the rotation of the fast subdomain with time must
taken into account, by including the time derivative terms. In the outer region (i.e., aw
from the fast transients), Egs. (17) and (18) indicate that these terms are of higher o
with respect taJ AandB J. Therefore, in a nonlinear problem their omission will provide
leading order accuracy only. Additional refinements (to the first) will not produce ai
improvement.

However, following the discussion of the linear case, when Eqg. (1) is weakly nonline
(as in the induction and recombination regions in a flame), it is possible to improve |
stability and the accuracy of the simplified Eq. (11) by additional refinements.

Inthe new explicit scheme the basis vectors are computed by neglecting the time derive
terms but by allowing more than one refinement to be executed. As was noted previot
this assumption reduces the refinements (17-18) to the block-power iterations. With su
strategy, the required extra storage and calculations are avoided, resulting in a more effi
scheme. However, fromthe discussion above itis clear that thisimprovementis accompa
by the shortcoming of possibly not being able to fully identify the fast subdomain, that is, t
maximum possible number of exhausted modes. As a result, the integration might proc
with a time step smaller than the locally characteristic scale of the problem.

The execution of the refinements (17-18) can be combined with the identification of
exhausted modes. The related algorithm is presented next, by considering the case v
all eigenvalues ofl are real. The generalized version dealing with complex eigenvalu
is a straightforward extension [45]. According to this algorithm, the block-power methe
for computing the basis vectors, which approximates the fast subdomain, is replacec
the simple power method, according to which tiiefast eigenvectors are computed one
at a time, starting with the ones that correspond to the fastest time-scale [45]. At the |
time step, the basis vectoas andb” are arbitrary, while at subsequent steps the vector
computed at the start of the previous integration step can be used as an initial guess.
this algorithm, good estimates of thkfast time-scaleg (= 1, M) and of the fastest of the
slow scales are obtained as well.
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The algorithm is as follows:
ALGORITHM 1 (Find CSP Basis Vectors and Time Scales)

Begin
Initial settings:
Ay =0,J"=1 = J°=1 = J = grad(g), P™=? = |
Looponm=1 N
Loopon S to converge over the value ¢ff
Loop ons; to improve the stability of the integration
Refine vectors,
Um = ‘]Ifm)a'r(ﬁl)
(tL = (O™ - gyt
a'gT?H_l) = qm(trrr?)L
End loop ons;
Loopons, to improve the accuracy of the integration
Refineb" vectors

m_ pm (M
q" = b, Jr

(tMr= (@ am) !
b?;z.i,-]_) = (‘E;.T)qu
End loop ons,
Iff (z/" & has converged] then go B
End loopon S
Label (B)
(M) = (Ty)R
Enforce the criterion to declare a mode exhausted
Iffm> 2 and|z(M)AY| > Yeror] then go toA
Update the projection matrix

PM — pm-1) _ g jym (no sum on m)
Update the fast mode contribution
Ay = Ay —anfm (no sum on m)

Note: f™is computed as follows:
if m> Mggthen f"=b".g
or:
if m< Mggthen M = fM=_—m)b™I"g
Deflate the last mode found from the Jacobian
I = pmy
IV = gpm
End loop on m

Label (A)

M=m-2 Number of exhausted modes
tM+1D)=t(m-1) Driving time-scale
PM — pM+D 4 g4 b™M+D Correct projection matrix

End.

The rate of convergence of ti®iterations increases with the ratio between the time:
scales of two consecutive modes. Thus, if two time-scales are close to one another
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convergence of the related two basis vectors may become extremely slow. This circ
stance does not affect the accuracy of the scheme, since poorly approximated basis ve
cannot identify the exhausted modes. Therefore, no simplification with respect to the
lated amplitudes which are still present in Eq. (11), is allowed. In addition, there is
diminishing in the efficiency of the scheme, since the appearance of two time scales ¢
to one another indicates that the corresponding two amplitudes decay with a similar r
As a result, no real gain from increasing the time step will be achieved if the first of t
two amplitudes is identified as exhausted by allowing a large number of refinements. T
justifies the enforcement of a maximum numbeBaferations, say 10, independent of the
achieved convergenceofm). In any case, the basis keeps being improved as the integrati
progresses in time.

As noted, the effect of the innei- ands,-refinements is to stabilize and improve the
estimate of the basis vectors. It has been observed that the algorithm improves its ov
performance if at least three iterations are allowed for bothatrendb” basis. The extra
cost for the iterations is largely compensated by the more stable evolution of the numbe
exhausted modes.

To improve the stability of the calculation, care must be taken in the evaluation of t
amplitude f™ of an exhausted mode, if computed as the projectiog oh the fast di-
rections f™ = b™ - g). In fact, the amplitude becomes small because competing effec
of usually large size cancel each other. Under these circumstances, the machine prec
might become insufficient to guarantee an accurate evaluation of the amgilitudebetter
estimate is found by replacing™ with its asymptotic valugf 7, defined later in Eq. (25).
In contrast, the amplitude of a slow mode involves no significant cancellations and
therefore be accurately computed by projecting the source term onto the slow directi
This discussion motivates the strategy adopted in the algorithm to compute

4.3. Integration of the Stiff ODE System

Let us assume that, at a certain stage of the process evolution, the trajectory has e
the inner region and the firé column vector, spans the fast subdomainyfwhile the
remainingN — M column vectorgs span the slow subdomain pfWith these definitions,
the original ODE system (9) can also be written as

dy M
a:Z;a,fW-Pg, (20)
r=
where the projection matriR is defined as
M
P=1-) af (21)
r=1

mapsg onto the slow subdomain of The time change of is obtained by integrating
system (20) over an interval of timt, according to the expression

T+At M T+At

Y(T + At) — y(T) :/ > a frdt+ Pgdt. (22)
T =1 T
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As demonstrated in Refs. [26—28], the amplitudes of the fast métevolve in time
according to the equations

dfr M ‘]
=2l r=1M, (23)

where

A= (dd—til +b'J ) (24)

Given that the trajectory is in the outer (slow) regidi, reaches the asymptotically
small valuef!, which expresses the contribution of the slow scales to the amplitude of t
fast modes (“mode mixing”) and is defined as

M N
fo==> 1 Y Afs (25)
r=1 s=M+1

and the matrix; is defined as the inverse &f,.
Solving Eq. (23) forf" and substituting it into the integral (22), yields

T+At M T+At M T+At
T+ A =y(T f' dt dt.
Y(T + Aty = y(T) + dt / r;aroo+T Py
(26)
Integrating by parts and using Eq. (25), yields
M
y(T + At =y(T) + Z at f'lietsat— Z A A
r,r'=1 rr'=
T+Aat M d T+At M T+At
- —[a 1, f"dt+/ fr dt+ dt. (27
/T r’rZ:ldt[arr] i ;ar P (27)

In the outer region, where the characteristic time-scal®©{g(M + 1)) and 7}, ~
O(z(M)), one can derive the estimates

dt[ 1] ~ O(ear) (28)

and
AL ~ O(e%) (29)

from being)J' ~ O(e2~1), which allows us to consider the first two integrals on the RHS
of Eq. (27) small. Moreover, the quant@:r v _; a1 f can be assumed much smaller
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att = T + At than att = T, because of the exponential decay of the mode ampliftide
alongAt = O(z (M + 1)) with a rate oft (M). Therefore, Eq. (27) can be written as

M T+At
YT +AD =yT) = aglerf"(T) + Pgdt+Small  (30)
rr=1 T
where

M ) T+at M "T+AL
Small= Y " a -t/ li—tsatf’ +/ > atl dt—/
T =1 T

r,r'=1

M d
—la-7/] f"dt (31)
AL

rr'=

collects all small contributions. Eq. (30), with tBenallterms neglected, is in a form suited
to write a time-scale splitting explicit scheme of integration, consisting of two steps. Fir
the contribution of the slow modes to the time changgisfcomputed by the expression

T+At
ST+a0=yM+ [ PDgnd (32)
T
whereP(T) is assumed constant betwe€rand T + At. Then, following Eq. (30), the
correction that results from the omission of the fast modes from the integration in Eq. (
is accounted by the expression

M
YT+ A =FT + At = > at)frf". (33)

rr=1

The second term at the RHS of Eq. (33) is referred to as “radical correction” in Ref. [2€

M
AYpast = Z affrr/|t:T f‘r’. (34)

rr'=1

However, the off-diagonal terms of the mattjx can be neglected in Eq. (34), so that
can be estimated as

T, ~8T(r), (35)

where the local characteristic time-scatgs) are found by Algorithm 1, and[, is the
Kronecker symbol. The off-diagonal terms can be neglected on the grounds that the &
vectors are usually a small perturbation of the eigenvectods ©his makes.;,, introduced
in Eq. (23), and its inverse', diagonally dominant matrices. This approximation allows us
to reduce both computing time and storage requirements.

Numerical tests have clearly shown that to make the algorithm stable, it is mandator
evaluate the amplitude of the fast modesaccording to the expression

fr =b'(T) - g[¥(T + AD)], (36)

which requires the computation of the source tgrat the state valuT + At) produced
by Eg. (32) and the projection of it onto the basis vetidiT) found at the beginning of
the integration step.
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Eq. (33) introduces a correction which is within the bounds imposed for the desir
accuracy (Eq. (13)) and is related to Eq. (10), the latter describing the manifold on wh
the trajectory—moving at the pace set by the slow scales—is confined by the action of
fast time-scales.

In particular, the simplifications implied by Eq. (32) move the trajectory slightly of
this manifold. Eq. (33) corrects this deviation at the end of the time step, by bringing t
trajectory back on the manifold. As Eq. (33) shows, this correction takes place along
fast directions only. It is easy to show that Eq. (33) is equivalent to one Newton iteration
Eqg. (10).

The time-scale splitting, represented by Egs. (32) and (33), becomes more and n
accurate as the time-scale separatipdefined in Eq. (19), decreases.

4.4, Choice of the Integration Step

The correct order of magnitude of the time-scale over which the slow contribution evolv
is provided by the inverse ¢f(M + 1)|. Therefore, the actual integration step of integration
At is evaluated as follows. The linear stability analysis of the time-scale splitting expli
scheme prescribes

IA(M + 1)|At < 1. (37)
Therefore, a tentative integration stﬁi) is defined as
AM=a(AM+DD)T=alt(M+1)| a<1, (38)

wherea = At/|t(M + 1)| is a safety coefficient against nonlinear effects. As a conse
guence, the error that results from the omission of the fast modes—defined in Eq. (16)—
be estimated as

Er = O( Vi) (39)

Next, the guesse(zﬁ is compared to the integration stey,q used at the previous
integration step to produce the new integration step according to the following heuris
strategy

if (At > Atgq) thenAt = min(L5Atyq, At) (40)
if (At < Atgq) thenAt = At. (41)

The rationale behind these formulas is the following. When at a certain point in time
is found that a number of fast time-scales become exhausted, the integration can pro
with the corresponding fast components of the source term removed. As a result, the s
characteristic time scale (driving scal) increases. In this case, the stability condition of
the explicit integration scheme makes it possible to take an integratiorstipger than
the one adopted at the previous integration stefgi{). In the explicit time-scale splitting
algorithm presented here, this integration step change follows a gradual increase as s
by the condition (40). In contrast, when at the end of an integration step it is found tf
a number of fast modes are reactivated, that means that the solution accuracy has
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degraded and that the integration step has to be repeated (“resetting” procedure) taking
account the modes previously removed. Consequently, the local characteristic time-s
decreases, being the fastest scale of the restored modes. In this case, the integration ste
be decreased instantaneously in order to comply with the stability limits. This motivates
adoption of formula (41).
The local error of an explicit scheme is in general of the ordegiadf/ )" f (y), where

n — 1is the order of the method,is the fastest time-scale in the problem, and the functiol
f (y) mainly depends on the particular scheme employed and the degree of the nonline
of the source term (Ref. [1]). It follows that the selection of the time step according
Eq. (38) introduces a local error in the explicit integration of the slow part, Eq. (32), whi
can be estimated as

EL= O("f'(y). (42)

4.5. Evaluation of the Jacobian When the Mixture Contains
Species in Low Concentration

The construction of the simplified nonstiff Eq. (11) is based on the CSP splitting betwe
the fast and slow subdomains. To perform the splitting correctly, a reliable Jacobian (i
derivatives of the source term with respect to the unknowns) to be fed into Egs. (17)
(18) is needed. The Jacobian can be evaluated either analytically or numerically by fi
differences. In this work, we followed the second option.

Unfortunately, the Jacobian becomes ill-conditioned when the process develops \
small values for some unknowns (smaller tharr*£0f double precision is used) while
other unknowns—such as pressure or velocity—have order of magnitude one. Care ir
evaluation of the finite differences involved in the Jacobian might alleviate the problem, |
not solve it altogether.

The basis vectors built upon such a Jacobian are not accurate enough and might tak
calculation to a stop, because some of the unknowns (species in low concentration) bec
negative. Species in low concentration cannot simply be removed once and for all from
calculation, since they might not remain small at later times. For example, during mos
the induction period, the intermediate species have very low concentrations, whereas
concentration abruptly increases shortly ahead the reaction zone.

Therefore, the problem of the ill-conditioned Jacobian because of species in low conc
tration has been circumvented as follows: if (i) one speciesy;séas a low concentration,
and (i) its corresponding source tergy,,, in Eq. (11) is negative—meaning thgt is
attaining even lower values—then the set of ODE is modified so as to fptoeremain
constant at its last positive value. In the CSP terminology, we force the mode associate
thei-th species to become a “dormant” [26] mode. This is obtained as follows:

1. the source term componegif,,, and the fast mode correction elemeny, ,in Eq. (34)
are both set equal to zero;

2. the off-diagonal elements of the Jacobian initfle row andi-th column are also set
equal to zero (thatis]] = J' =0, j = 1, N,i # |), and a small value is attributed to the
diagonal element (that i’ = 10-29). By construction, the diagonal elemelitbecomes
the eigenvalue of the mode driving the small spegiedhis forces the species to change
very slowly in time and, in the limit, to remain constant as desired.
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5. THE TIME-SCALE SPLITTING EXPLICIT ALGORITHM

The time-scale splitting algorithm is organized in two substeps according to the tin
scale splitting between fast and slow modes presented by Egs. (32) and (33). Starting 1
a known value of/ at timeT, the algorithm proceeds to the next tifiet- At as explained
below.

ALGORITHM 2 (The Time-Scale Splitting Explicit Algorithm)

Begin
Step I: Slow Time Scales Contribution

1. Evaluate the source tergdT) = g[y(T)]

2. Find the numbeM[y(T)] of “exhausted” fast modes, the local characteristic time
scalest(r)[y(T)] (r =1, M + 1), and the corresponding basis vectors spanning the fa
subdomaire, [y(T)], b' [y(T)], withr = 1, M[y(T)];

3. Build the projection matri®[y(T)] = | — MY 5 [y(T)10 [y(T)];

4. Integrate numerically between tinle and T + At the nonstiff differential equa-
tion (32)

dy

3 = PY(Mlgly(®)] (43)

from the initial conditiony(T) to the final valuey(T + At), by means of any explicit
scheme, of any order of accuracy, with an integration ateprhose order of magnitude is
(M + 1). The integration scheme adopted in our work has been the explicit Runge—Ku
fourth order, 4-stages scheme [1]. The integration ateactually used is defined according
to the relations (40 and 41). The valjp@ + At) accounts for the contribution of the slow
time-scales only and will be corrected Byep Il if exhausted fast modes are present.

The projection matrix s kept constardlong the integration step at the value obtainec
for the initial y(T). This assumption is sufficiently accurate since the basis vectors evol
over the slow time-scale.

Step II: Fast Time Scales Contribution (undertaken onliylif£ 0)

According to Eqg. (33), the contribution of the fast modes to leading order accuracy ¢
be evaluated as follows:

1. Computey(T + At) = g[¥(T + At)];

2. Evaluate the fast modes’ amplitud&(T + At) = b [y(T)] - g(T + At);

3. Correct for the contribution of the fast time-scales:

Y(T + A = J(T + At) — Ay (44)

whereAy;,, is evaluated according to the approximation (35) as

MLY(M)]
AYs= Y aly(M]tOyM]f [g(T + AD)] (45)

r=1

End.

At the beginning of the calculation, the physical process under examination evol\
according to the fastest scale and thus the number of exhausted modes islzerd)(
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This will cause the integration step to be scaled according to the largest eigenvalue of
Jacobian ofy. In this circumstance the algorithm reduces to an explicit scheme to advar
Eq. (43) withP = |, that is, to advance the original unsplit ODE. As the fast processt
become exhausted) increases and Eq. (43) advances with larger and larger integrati
steps as determined by Eq. (41).

6. THE TEST PROBLEM

The validation of the new algorithm is carried out on the basis of the auto-ignition of
stoichiometric mixture of methane and air behind a steady, normal shock wave. The flo
assumed to be steady, inviscid, and nonconducting. The kinetics of the methane/air mix
is governed by a detailed mechanism [50] of finite rate chemical kinetics, which involv
260 reactions, 49 species, and 4 elements.

With these assumptions, the relevant flow model equations are the reactive Euler equa
which form a set of PDEs. To evaluate the properties of the new algorithm, the react
Euler equations are reduced to a set of ODEs, by assuming that the flow is one-dimensi
which can be quickly solved by marching in space.

The thermochemical model adopted for the gaseous mixtures and the details of
chemical kinetics model are reported in the Appendix. This flow displays the main featu
related to the subject under study, but it remains simple enough to allow a thorough anal
of the performance of the new scheme.

The nonequilibrium state of a mixture dk ideal gases can be defined by means of twit
state variables and the mass fraction of each gaseous species. Reasithenthalpyh, can
be adopted as thermodynamic state variables, being the most natural to express conser
laws. However, the logarithm of pressuRe= log p and the entropy of the mixture
can be also selected (this yields a formulation more suited to describe wave propage
phenomena). In this event, the energy equation is replaced by an equation for ent
transport and production, obtained by manipulating the Gibbs law of thermochemis
Under these assumptions, the set of modified reactive Euler equations formed by Eq. (A.
Eqg. (A.21), Eq. (A.22), and Egs. (A.18), derived in the Appendix, can thus be written as

DP
= trV-d=-vp

Dt
D 2
—q+a—VP=0
Dt 1% (46)
Ds_S
Dt
Dy, .
ot

where g is the flow velocity vector, and the source terms appearing at the RHS of Egs. (
are defined according to the expressions reported in the Appendix as

. s hi R| . Ne A
DZZ(CDT _R)Yi =Xi:pyi
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1
$= —?Ewi (47)
o GM;
Y= ——.

0

The temperature is found by inverting numerically the caloric equation of state Eq. (A.

If the flow is assumed steady and the flow velocity exactly orthogonal to the shock frc
(and directed along the-axis), then Egs. (46) can be further simplified to yield the set o
ODEs

AWy = W (48)
where
U .
u y 00 b —vb
a2 T
0 0 u O Y S
0 0 0 lu ' Yi

Egs. (48) includeNs + 3 equations for thé&s + 3 unknowns: logarithm of pressuf®
flow velocity u, entropys, andNs species mass fractionys (i = 1, Ng).

Therefore, since the methane/air mixture considered invdikes 49 species, the total
dimension of the system i = Ng + 3 = 52. Four elemental conservation laws (for the
4 elementsC, H, O, N) set the number of linearly independent CSP modes equsl-+to
E =52—-4=48.

By premultiplying Egs. (48) with the inverse matrix 8f we obtain

W= AN =g, (49)
where
o -yMZ pp sy
g_((l\/lz—l)u(lvl?_l)uu) ’ (50)

andM = u/ais the flow Mach number. Eq. (49) has the same form as Eq. (1), where vec
w replaces. Moreover, since the independent variable ispace) instead df(time), the
time scales must be interpreted as spatial scales and the eigenvaha& the dimensions
of the reciprocal of length instead of time.

7. RESULTS

The performance analysis of the new scheme is evaluated in terms of accuracy, c
putational efficiency, and consistency. Its performance is compared against that of
LSODE [48] package. All calculations were carried out by using a MacintostBG3B
computer and the ABSOFT FORTRAN compiler.
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7.1. Design and Performance Parameters

A parametric investigation has been carried out to assess the performance of the
algorithm. The main design parameters which control the algorithm operations are pertul
one at the time to identify their effects and relative importance. To simplify the presentat
of the results, the main design parameters of the algorithm are summarized in the follow
Then the performance parameters used will be enlisted to to compare the different opti

7.1.1. Design Parameters

An LSODE user can define the level of accuracy of the calculation by varying tv
(possibly vector) parametent®| andatol, which control the maximum relative and absolute
errors on each unknown tolerated at each step of the calculation. The size of the integre
step and the order of accuracy of the scheme of integration are adjusted algorithmic
so that the specified level of accuracy is obtained. In all calculations reported herein,
Jacobian is generated numerically by LSODE using the source term routine providec
the user.

A CSP user can control the level of accuracy of the calculation by setting bounds on 1
sources of errors, i.e., the numerical integration and the omission of the exhausted ar
tudes. First, the specific explicit method selected for the integration of the slow compone
sets an accuracy level, the exact magnitude of which is controlled by the size of the il
gration step as a fractiam of the local driving scale (M + 1). In addition, the accuracy
can be controlled by the two (possibly vector) parametgrsand e;ps, Which define the
number of fast modes deemed exhausted and therefore neglected from the integration.
that the mechanism by whiekhy, andegps affect the solution accuracy is different from that
of rtol andatol; the former specify the maximum allowed error in the computation of th
time derivative of the solution, while the latter specify the maximum allowed error in tf
solution itself.

Given an explicit integration method, the parameterg, andeaps can in principle
be adjusted so as to satisfy soni@ andatol as done in LSODE. The association of the
three parametets, €¢|, ande,ps ON the solution accuracy depends on the particular explic
integration method employed.

In fact, the combined local error introduced by the omission of the exhausted amplitu
(Eq. (39)) and by the explicit integration scheme (Eq. (42)) is

Elor = O (€Y' | + €hpg ) + O@" f' (y)). (51)

Note that the first term in the expression above gives a direct estimate of the local el
while from the second term only an upper bound can be obtained, since the fufiijpis
in general very complex to compute. In the following, the results of the parametric analy
reported will clearly illustrate the effects of the three parameters on the solution accurs

7.1.2. Performance Parameters

For this specific reactive flow problem three conservation laws of global mass flc
momentum, and energy have to be satisfied, together with the conservakazlerhents.
Moreover, if the composition is defined by using nondimensional (mass or mole) fractic
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TABLE |
Definition of Test Case

Mixture ¢  To[K] po[atm] L [m]

CH,/Air 1.0 1000 0.6 0.80

then these fractions must always sum up to one, and they must always be nonnegative. -
following the terminology of Ref. [55-57], the numerical solution should satisfyB + 1
invariants and\s inequalities at each integration step. However, both LSODE and the C¢
algorithms cannot exactly satisfy these properties, and there has been no attemptto elim
unknowns by explicitly resorting to these (linear and nonlinear) invariant relations.
Instead, the deviation of the computed invariants from the exact values will provide use
measures of the numerical errors. To this aim, we will report the relative error on mass fl
err (scaled with respect to the initial value) averaged over the integration domain.
To make the presentation of the properties of the algorithm complete, additional perf
mance parameters will be introduced, such as (i) the number of integratior\stgp§i)
the number of function evaluatiorése, and (iii) the number of Jacobian evaluatioNg
needed to complete the integration.

7.2. Free-Stream Conditions

The selected values of pressyrg and temperaturé,, ahead of the shock are reported
in Table |, wherep is the equivalence ratio of the mixture ahdhe distance from the shock
where theNO species reaches equilibrium.

The Chapman—Jouguet (CJ) detonation state parameters can be obtained by usin
SP-273 package [58]. By definition, the burned mixture downstream of a CJ detonatiol
in thermodynamic equilibrium and has an “equilibrium” flow Mach number of one. The C
parameters corresponding to the free-stream conditions specified in Table | are reporte
Table I1.

However, for this specific mixture and free-stream conditions, it is impossible to compt
the CJ detonation structure by means of a finite rate chemistry, steady-state flow me
because the detonation structure develops a singularity before equilibrium is attainec
will be shown in the next section.

Therefore, the test case involves a free-stream Mach nuivieahead of the normal
shock slightly higher than the CJ value Mli;; = 2.7931. We selected fo¥l,, the value
2.810, since this is the minimum value allowing to reach equilibrium. This value yield
for the values of pressurp,, and temperaturd,, selected in Table I, an “overdriven”
detonation wave slightly stronger than the corresponding CJ detonation.

TABLE Il
CJ Detonation; Species Are Expressed in Mole Fractions

Type Mcy Vet [M/S] p [atm] T [K] H,0 NO

C.J. 2.7931 1741.6 3.0981 2892.7 0.147 0.01204
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FIG. 1. OD detonation: evolution of temperature and heat released per unit time.

7.3. Numerical Solution by LSODE

The package LSODE is used to obtain the reference solution. The solution is docume
by means of plots starting at the post-shock state and ending Wstains its equilibrium
value. The evolution in space of the mixture temperalueand of the heat released per unit
time is shown in Fig. 1. The largest heat release clearly occurs inside the reaction zone |
between 2.e-03 m and 1.e-02 m. Thus, the reaction zone is about 8 mm wide compared
the 1 m width of the integration domain.

The plots ofNO and CH, mass fractions are reported in Fig. 2. These data show th
methane is quickly and almost fully consumed within the reaction zone, whal®as
because of its slow kinetics, keeps increasing in the long-lasting phase downstream o
reaction zone.
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FIG. 2. OD detonation: evolution of CHand NO mass fractions.
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FIG. 3. OD detonation: evolution of flow Mach numbist.

The formation oNOis an endothermic process, as demonstrated by the slighttemperat
drop noticeable in Fig. 1. This causes the “frozen” flow Mach nuniMe& u/a to first
attain a maximum value right after the reaction zone (pgiint Fig. 3 and then to relax to
a lower value at equilibrium (poird in Fig. 3.)

Under this circumstance, the CJ state cannot be found as the numerical solution of
steady-state, nonequilibrium, reactive Euler equations, since the model becomes sing
(the denominator of Eqg. (50) becomes zero) as soon as the flow becomes “frozen” sc
In fact, if one tries to attain at the CJ condition starting from free-stream Mach numbe
My higher thanMc;, then the “frozen” sonic condition will first occur at the location of
maximum Mach (poin#d), that is far earlier than the achievement of the equilibrium stag
(point B).

As previously noted, the lowest free-stream Mach numidgs allowing a complete
numerical solution for the free-stream pressure and temperature given in Table | was fo
to be 2.810. For thi®l,,, the maximum value of Mach number found at pokiits 0.923
and at pointB is 0.8737, which is much lower than unity (Fig. 3). Therefore, the slowe:
detonation found numerically is of the “Over-Driven” type (OD). The detonation paramete
of the OD detonation are reported in Table 1l which may be compared to Table Il
appreciate their deviation from the corresponding CJ values.

The effect ofrtol in the solution accuracy is displayed in Fig. 4, where the evolution of th
temperature and the relative error on mass flow downstream of the reaction zone is show

TABLE Il
OD Detonation

Type M, Vet [M/s]  platm] T [K] H,O0 NO

0.D. 2.8100 1750.2 3.4247 29224 0.146 0.01239

Note.Species are expressed in mole fractions; frozen Mach number at
equilibrium is 0.8737; and max Mach number is 0.923.
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FIG. 4. LSODE's converges as the error controls are tightened; convergence is obtainemhth.e — 6.

atol = 1.e — 14. Given that agtol decreases the solution accuracy increases, the results
Fig. 4 demonstrate that a converged solution is obtainedndth= 1.e — 6, which yields
an average error of the ord€(107%). As the results of Table IV show, increasing the
required accuracy (smalletol) asks for more integration steps and functions and Jacobic
evaluations.
The LSODE solution obtained wititol = 1.e — 6 (requiring 1010 integration steps,

12492 function evaluations, 210 Jacobian evaluation, and a total of CPU time of 36 s) \
be used as a reference for the evaluation of the CSP-explicit algorithm’s performance.

7.4. Numerical Solution by the New Explicit Schemes

The following sections will first illustrate how the dynamics of the system can be d
scribed and exploited by the new scheme. Then its performance, in terms of accuracy
computational efficiency, will be evaluated.

7.4.1. Dynamics of Modes
The detonation structure can be analyzed from the CSP point of view, mainly by inspect
of the evolution in time of the number of exhausted motiesshown in Fig. 5. Right

TABLE IV
LSODE's Package Performance

CPU CPU CPU CPU
rtol atol ind. reac. recom. tot. err Ns; Nte Nje
l.e4 l.e-14 7.85s 7.32s 16.8s 32.0s —4.51e-04 698 11540 201
l.e-5 le-14 8.42s 9.77s 9.25s 27.4s —2.99e-05 756 9591 162
l.e-6 l.e-14 12.4s 11.5s 12.3s 36.2s +3.83e-06 1010 12492 210

l.e-7 l.e-14 16.3s 15.6s 28.0s 59.8s —4.07e-07 1506 21125 362
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FIG.5. Exhausted modes evolution as obtained by settirg0.15 and 0.45.

behind the shock wave, the flow is under strong nonequilibrium conditions. Thus, there
no exhausted modes amdi = 0. However, as the auto-ignition proceeds, more and motr
modes become exhausted. Three regions exist wWestays rather constant:

Induction. The first region starts right after the initial transient which follows the shoc
perturbation at 1.e-04 m and ends at 2.e-03 m. It corresponds to the induction period du
which the radicals form. According to the prescribed accuracy, the number of the exhau:
modes ranges from 15 to 20. Therefore, in this region an equilibrium manifold formr
This suggests that during induction 15 to 20 species are in quasi steady-state and
reduced models, involving 48 15 = 33 to 48— 20 = 28 slowly varying species, can be
constructed.

Reaction. When a sufficient pool of intermediates forms, the reaction zone starts; t
major chemical activity occurs which can be identified by the fuel breakdown and by t
sudden temperature rise. This region lies between 2.e-03 m to 1.e-02 m, and the nur
of exhausted modes drops to 7—15, meaning that the degree of stiffness has been lo
reduced. Moreover, the nonlinear effects are stronger because of the sensitivity of
reaction rates to the large changes in temperature. As shown in the following, the softer
of the stiffness and the strong nonlinear effects have a significant effect on the performe
of the new algorithm.

Recombination. As soon as the fuel has been consumed, the recombination zone st
and persists up to the end of the integration domain (1 m). During this p&iodjowly
forms endothermically—the temperature in Fig. 4 decreases slightly—and reaches its e
librium value asymptotically. This zone is characterized by much slower scales than
induction or reaction zones. As a result, the number of exhausted modes rises to 41-4
dicating that an equal number of species are in quasi steady-state and that a reduced r
involving five to seven species, basically those related to the formatiN@ddnetics, can
be constructed.

Note that once the number of exhausted modes and the corresponding CSP vector
known, it is easy to compute the CSP data (i.e., steady-state pointer, participation,
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importance indices) which allow both to analyze the detonation structure and to const
proper reduced mechanism as fully described in Refs. [37-39].

7.4.2. Accuracy of the New Algorithm

The evolution of the temperature and the error in the reaction and recombination regi
are shown in Fig. 6, for different values of the paramet@nde;¢ = 1.6 — 5 andegps =
1l.e—10. Itis shown that ag decreases, the error reduces and the CSP solution convert
to the LSODE reference solution.

The space evolution of the error, displayed in Fig. 6, shows that its magnitude st
within the bounds imposed and that its largest value occurs inside the reaction zone
this zone, where the solution exhibits the largest slopes, the CSP method encounter
greatest difficulties. This is also demonstrated by the results displayed in Fig. 7, inwhich
integration steps selected by LSODE and CSP are compared. It is shown that the stef
remarkably similar inside the induction and recombination zones, despite the comple
different criterion upon which LSODE and the new algorithm make their decisions, where
the largest discrepancies are found inside the reaction zone. There the new algorithm t
much smaller integration steps than LSODE.

7.4.3. Efficiency of the New Algorithm

The efficiency of the new algorithm can be assessed by inspecting the data summa
on Table V, where the design parameters of the algorithm considered,aed«. Table V
clearly shows that:

o the new algorithm is approximately one order of magnitude slower than LSODE;

e the new algorithm is able to deliver an accuracy comparable to that of LSODE
alteringe e anda: the increased accuracy is obviously obtained at the expense of a hig
computational cost;
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e the ratio of the number of function and Jacobian evaluations for the new algorithm &
for LSODE scales almost proportionally to the the ratio of the CPU time required by t

two methods;

o the difference between the numby, of Jacobian evaluations and the numblgy of
steps is equal to the number of times the resetting procedure (repetition of the integra
step), described with reference to Eq. (41), is enforced; the data of Table V demonst

that the conditions for resetting occur very rarely.

TABLE V

CSP-Based Algorithm Performance

Effect of a; €, = 1.€-5;€0s=1.€-10

CPU CPU CPU CPU
o ind. reac. recom. tot. err [\ Nte Nje
0.45 176 s 228's 191s 594s—-7.21e-04 1931 110946 1947
0.35 225s 303s 31ls 839s-2.15e-04 2684 153867 2700
0.25 194 s 380s 140's 714s-1.10e-04 2430 139830 2454
0.15 290s 606 s 178 s 1070s-2.23e-05 3760 215750 3786
Effect of €¢); @ =0.25;€,,s=1.e-10
CPU CPU CPU CPU
€rel ind. reac. recom. tot. err [\ N¢e Nje
le-4 302s 414 s 182s 898 s—-4.57e-03 3080 178750 3138
l.e5 194 s 380s 140s 714s—1.10e-04 2430 139830 2454
l.e-6 64.2s 308s 217 s 590s+5.41e-04 1910 110520 1940
l.e-7 68.8s 738s 506 s 1313 s+8.50e-06 4501 257657 4521
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7.4.4. Comments about Accuracy and Efficiency

The findings related to both the accuracy and the computational efficiency of the r
algorithm should not be surprising. The new algorithm, apart from the error caused by
explicit scheme employed for the integration of the slow components of the derivativ
introduces an additional error produced by the higher order terms omitted which are relz
to the exhausted fast scales.

Inside the reaction zone, where the strongest nonlinearities and the largest slope
the solution appear, two kinds of problems occur. First, the negligence of the derivat
terms in the formulas for computing the basis vectors, i.e., Egs. (17) and (18), is not s
a valid assumption. As a result, the full dimensions of the manifold cannot be identifi
Fewer exhausted modes are identified and the integration there proceeds with a time
much smaller than the local characteristic time scale, thus slowing down the computati
Second, the functiorf (y) in the expression for the local error produced by the slow pal
integration (Eq. (42)) attains the maximum values, causing a deterioration of the solut
accuracy. Both these effects are easily recognized in the results displayed in Figs. 6 a
These results indicate that the new algorithm will be especially successful when dea
with very stiff and quasi-linear problems.

7.5. A Hybrid Approach

The results showed that the new algorithm, consistently with the assumptions of the the
upon which it is build, performs better in regions of high stiffness and worse elsewhe
Thus, a test has been carried out in which the ODEs are integrated by using the
explicit scheme everywhere but in the reaction zone wherein LSODE is used instead.
performance obtained by this “hybrid” procedure is reported in Table VI.

By comparing the data in Table VI with those obtained by using the new algorith
throughout the whole domain (Table V) reveals that:

e the new algorithm takes most of the time to compute (hot very accurately) the flal
Zone;

e the accuracy provided by the new algorithm in the induction and recombination zc
is very high even when large (up to 0.9) are used,;

e inside the recombination zone, the CPU time is still high because there are up to
exhausted modes to be found at each integration step.

Now consider that for most applications of engineering interest, the reaction zone
zones) covers only a minute fraction (however important) of the whole domain of integrati

TABLE VI
Performance of the Hybrid Calculation

Effect of €;e1; €aps = 1.6 — 10;a = 0.90

CPU CPU CPU CPU
€rel ind. reac. recom. tot. err Nst

le4 25s 15s 157 s 197 s —1.56e-04 934
le5 3ls 16s 224s 271s —7.66e-07 1119

Note (i) CSP-based algorithm used everywhere but in the flame,
and (ii) LSODE's package used in the flame.
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and that almost the whole flowfield is affected by stiffness. In view of solving these kin
of PDEs problems, this test suggests the following tentative strategy:

e to use LSODE, or a stabilized explicit scheme such as a RKC scheme, in the fla
(where the problem is mildly stiff);

e to use CSP (after having improved its speed) elsewhere where the problem is very ¢

8. DISCUSSION OF THE RESULTS

The findings illustrated in the previous section lead to different conclusions, depend
on whether one wishes to solve an ODE or a PDE problem. Therefore, the discussion
be done separately for the two options.

8.1. Discussion for ODEs Problems

Comparing the findings of Table V to those of Table IV pointed out that one of the ma
reasons that makes the new algorithm less performing (in terms of computational efficier
than LSODE is recomputing the Jacobian at each integration step.

In contrast, LSODE updates the Jacobian (and sometimes only an approximation of
Jacobian) only once over an average of 5-10 time steps. LSODE can adopt this stra
because it exploits the knowledge of the solution and of the Jacobian at previous ir
gration steps to both update the new Jacobian and to take a decision about the ord
accuracy of the scheme of integration (LSODE is a variable order, variable step, i
tistep, implicit algorithm). Overall, this makes LSODE a very efficient solver for ODE
problems.

Instead, the new algorithm in the present form is a one-step, fixed-order, variable-s
explicit scheme. Therefore, it cannot take advantage of the past history of the solutior
does LSODE. The price paid is a higher number of function and Jacobian evaluation.

Afurther source of computational work for the new algorithm is the refinement procedt
which is not required by LSODE. A profiling analysis of the code showed that the most CF
time-demanding calculations of the new algorithm are the two matrix products requirec
deflate the Jacobian from left and right.

However, LSODE must solve a set of linear equations for the implicit formulatior
whereas the new algorithm has not. Therefore, for the new algorithm to become competit
it is important to bring the cost of the refinement procedure down to the same level of
cost to solve the set of linear equations needed by the implicit formulation.

Last but not least, the coding of the new algorithm in its present form is far from bei
optimal, and it is definitely less efficient than the highly optimized and extensively test
LSODE package. Consider as an example, that the CPU time decreased by a factor
simply by carrying out the matrix multiplications with the help of a routine optimized fo
processors provided with a cache memory.

8.2. Discussion for PDEs Problems

The standard way to integrate numerically a stiff PDE problem involves first an opera
splitting which allows the integration of the stiff source term separately from the spat
differential operators (convection and diffusion) by using the stiff schemes embodied
LSODE (or later versions of it [9]).
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The performance of LSODE in this context is much poorer than that achievable wt
solving ODE problems. This happens for the following reasons:

e The Jacobian at past times is not available anymore, and, therefore, it ought tc
recomputed at each step and space location as done in the CSP algorithm, because
save it at different time levels and at each space location would result in unmanage
large storage requirements, and (ii) for unsteady calculations involving traveling wave:s
is not possible to extrapolate the new Jacobian from those evaluated at past times b
a fixed space location. Thus, the number of Jacobian evaluations for LSODE and the
CSP algorithm in a PDE problem will become of similar order of magnitude.

e Since LSODE is a multistep scheme, its starting step procedure is much more exper
as compared to the cost of the time steps that follow. In fact, not only the lack of past Jacob
forces the procedure to recompute the full Jacobian, but also the variable step/varia
order features become either unavailable or more expensive when envisioned for the
step. Unfortunately, and for the same reasons explained above, each integration of the
operator of a split PDE problem has to be carried out as if composed of all and only f
steps.

To quantify the loss of LSODE's efficiency under these circumstances, we attempte
emulate how LSODE would operate in a PDE context using an ODE model. This can
achieved by forcing LSODE to reset the control paramistateequal to 1 at the beginning
of each integration step; in so doing, all internal arrays of LSODE, including previous valt
of the local Jacobian matrix, are cleared.

In a real PDE problem, the integration time-step size is determined on the basis
CFL number criterion. Given this time step, when LSODE takes over, the integration
the stiff part of the PDE along the CFL-determined time step is performed with a nul
ber of smaller steps, determined by the method itself so that the prespecified accura
respected. In the numerical test performed in order to test the efficiency of LSODE il
PDE environment using an ODE problem, we had to provide LSODE the time step
quence, since no spatial operator is actually present in the set of ODEs considered |
Two different sequences have been considered (see Fig. 7); the one generated by LS
when it works in the standard mode (the method chooses the time step using the solt
history) and the one generated by the CSP new algorithm, with a time step defined a
locally fastest of the slow time-scales. The numerical test allowed us to draw the followi
conclusions:

e Asthe results displayed in Fig. 8 show, by forcing a new start at the beginning of ez
(externally supplied) time step, LSODE starts the integration with a very small substep. -
size of this substep quickly recovers to that attained by the standard mode of integrat
However, no matter how quick this recovery might be, this process of integration cause
severe loss of efficiency when compared to its standard mode of operation.

e As the data shown on Table VIl indicate, the PDE operation mode on LSODE cau
the evaluation of the Jacobian a very large number of times. This development, which is
major cause for the loss in efficiency, is due to the fact that the new start at the beginr
of each time step clears out the memory of all previous steps and that the data require
the method to march have to be computed anew.

e The overall effect of the PDE operation mode of LSODE is to increase dramatica
the CPU time needed to complete the integration. As Table VII shows, the 36 s for
LSODE operation in an ODE mode grow up to 811 s (or 1598 s) for the operation in a P!
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mode, when the supplied time step sequence is provided by LSODE when it operates i
ODE mode (or by the CSP new algorithm).

Onthe other hand, the CSP-based algorithm only requires a limited amount of informat
made available from the previous integration step (although it does not strictly need it), t
is, a CSP basis to be used as a first guess in the refinement procedure. This is easily ava
in PDE problems as well as in ODEs. In this perspective, the CSP-based algorithm cau
classified as a self-starting scheme.

To conclude, the performance of LSODE in ODE problems, for a number of reaso
is better than that of the new scheme. However, this result cannot be safely extrapol
to PDE problems, where most of the advantages enjoyed by LSODE, when dealing v
ODEs, disappears.

The extension of the new CSP-based scheme to PDE problems is the subject of ong
research. Note, however, that other integration schemes, suited to integrate the stiff P!
are available (see a review in Ref. [11]), which are more efficient than LSODE in deali
with stiff PDESs, although less competitive than LSODE on a single, long-term integratic

TABLE VII
LSODE's Performance with Variable and Two Prespecified Integration
Step Size Sequences

CPU
dt rtol atol tot. err [\ Nte Nje
Variable step le6 le-14 36 s +3.83e-06 1,010 12,492 210
LSODE sequence l.e-6 1le-14 811 s+1.78e-06 9,839 292,921 5,320
CSP sequence le-6 1le-14 1598s 9.32e-06 18,514 621,524 11,335

Note.One sequence generated by LSODE working in the standard variable step size mode,
and the other by the CSP-based algorithm.



EXPLICIT ALGORITHM FOR STIFF PROBLEMS 73

Therefore, the new time-scale split algorithm should be confronted with these others as
as with LSODE.

9. CONCLUSIONS AND FUTURE DIRECTIONS

A new explicit algorithm based on the CSP concepts has been developed and its
formance has been compared against that delivered by the LSODE package. The re
demonstrated that (i) the accuracy of the new algorithm is comparable to that providec
LSODE; (ii) the stability limitations of the conventional explicit schemes have been ful
circumvented; and (i) the computational efficiency of the code (algorithm plus coding)
still non satisfactory.

The possible directions to improve the computational efficiency have been identifi
(i) the number of Jacobian evaluations and the number of times a new CSP basis mu:
updated have to be reduced, (ii) the cost of each refinement must be reduced, and (iii
coding of the package must be optimized.

Before closing this paper, it seems appropriate to address the issue of how the exy
scheme could be extended to solve stiff PDEs problems, and why this might result i
better strategy as opposed to the standard operator (or time-step) splitting approach.

The explicit time-scale splitting should in principle be able to provide a direct couplir
of the spatial scales with the slow time-scales originated by the source term, when the
time-scales are due to the source term only.

The likely advantages of the time-scale splitting compared to the time-step splitting
the following:

e The time-scale splitting should allow the use of an explicit algorithm thus eliminatin
—the need for locally implicit or multistep scheme;
—the solution of nonlinear systems at each integration step; and
—the extra storage associated to a multi-step scheme.

e The time-scale splitting provides an estimate of the order of magnitude of the lo
driving time-scale obtained by accounting for both convection, diffusion, and reactiol
This estimate can be used:

—to adjust (maximize) the integration step for time marching; and
—to set the proper spatial discretization (grid resolution).

APPENDIX: THE PHYSICAL MODEL

This appendix describes the thermochemical model, the chemical kinetic model, and
conservation laws used in this work.

A.1. Thermo-Chemical Model

The mixture is composed of thermally and calorically perfect gases. The thermal eq
tion of state for the mixture is formally identical to the one valid for a single ideal ine
gas,

P=Zpi= (ZPi)RTZPRT- (A1)
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The mixture pressur@ and densityp are defined in terms of partial pressumgsand
densitiesp;; the mixture gas constamR is defined by the relatiolR = >, (R/M)y; =
> Ryi, whereR isthe universal gas constamt; are the molecular weights of the mixture
species, ang; are the species mass fractions. The reactive mixture of gases is conside
to be in thermal equilibrium. Thus, the translational and rotational energies are accour
for as being fully excited at the temperatirewhereas vibration is in equilibrium.

The caloric equation of state is formulated by expressing the mixture enthalggrms
of the species enthalpiés,

h=> hi(My. (A2)

where

T
hi(T) = Ahofi (To) + / Cp (T)dT. (A.3)
To
The mixture is not calorically perfect because the enthalpy is a function of both temp
ature and mixture composition.
The entropy of the mixture is defined on the basis of the species entropies defined a

T dT
So(-l—) = AS% +/ Cpi (T)? (A4)
To
S(T, p) =5(T) — R In(pi/po)- (A.5)

The species entropies depend on the partial pressupeas well as on temperatufie
For the mixture, we have

STy =Y _s(My, (A.6)

S(T, p. yi) = $; — R |log(p/po) + »_ X logxi | , (A7)

where the partial pressurgs are expressed in terms of the mixture pressu@nd the
mole fractionss;. The formation enthalpyhs (To) and entropyAs; (To) are evaluated at
standard conditions.

The appropriate sound speed for models of thermal equilibrium and chemical nonec
librium is the frozen sound speed definedds= y p/p, wherey is the ratio between the
(frozen) specific heats, andc, of the mixture

=[] /(o) o

A.2. Chemical Kinetic Model

Let theNs species forming the gaseous mixture be formedlpyifferent elements. The
expressiorX; denotes the chemical formula of théh species, composed by elementsE !

Xi=Ex EZ ---E} i=1Ns

Ai A
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The subscripg; ; is the number of atoms of the elemét in the species;. The set of
reactions defining a kinetic model can be identified bykhesymbolic relations

Ns Ns
DX =) v X k=1N, (A.8)
i=1 i=1

whereN; is the number of different reactions occurring amonghhepeciesy/ , andv/’
are the stoichiometric coefficients of reactants and products, respectively.
The rate at which thi-th reaction progresses in time is quantifiable with the relation

[NS f (RT)Z(u,k

r[civl'k Ik)HQ'k]_rf (A.9)

i=1

k=KX

where the forward rate constant is in Arrhenious form
KX = BT exp(—Ex/RT), (A.10)

whereEy € is the activation energy, arg} is the steric factor. The equilibrium constaﬁg
is evaluated as

KK o(T) =exp _T (A.11)

def ( Z|NS(V| k= Vi >
In these relations, the chemical potenjigl= h; — T 5’ is evaluated under equilibrium
conditions (NASA polynomials).
The net rate of production of theth species; resulting from the simultaneous action
of the N, reactions can be evaluated with the relations

G = i <W)lk<v-” — v r" (A.12)
= M ik ik . .

The exponenly is equal to one when the reaction includes third bodies, and zero el
where. Third body efficiencigg are combinedintotheterh = >, ¢ixi; M = >, MiX;
is the molecular weight of the mixture. The chemical kinetic model for the system metha
air can be found in [50].

A.3. Reactive Euler Equations

On the basis of dimensional estimates, it is possible to safely neglect all transport |
nomena in the flow regimes characteristic of detonation waves. The gas dynamics of rea
flows can be adequately described by the reactive Euler equations, i.e., the set of mass
mentum, and energy conservation laws formally identical to the one valid for an inert g

Dp
2P v.q= Al
o TPV A= 0 (A.13)
Dq
— +Vp= .
P b +Vp= (A.14)
,oh_Pp_y (A.15)
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whereq is the flow velocity vector, plus a set of rate equations for the production ar
consumption of chemical species

P ava=p i=1Ns (A16)
whereg; is the production rate of thieth species. The set is closed by the thermal ant
calorical equations of state. By combining the definition of partial dergity= y; o), with

the conservation of the total mass, we can recast the conservation ghthpecies in terms
of mass fractions

Dyi o .
— P 1N A17
Dt P | s ( )

whereg; is the rate of production on a mass basis. The rate of production on a molar bz
G is related tgg; by gi = ¢ M;. Thus, we obtain the equations

Dyi _ aMi
Dt~ p

=¥ i=1Ns, (A.18)

expressing the transport and production of species mass fractions.
Differentiation of the thermal equation of state (A.1) yields

do dh R hi

— =dlo - — — — d A.19

; 9(p) CD+Z<R CpT) ¥ (A.19)
wherec, is the specific heat at constant pressure of the mixture. The differential of the stz
enthalpy in Eqg. (A.19) can be expressed in terms of differential of pressure by using
conservation law of total enthalpy (Eq. (A.15)), and the resulting relation can be substitu
in the conservation law of the total mass of the mixture (Eq. (A.13)) to yield

DP

Moreover, the pressure gradievip in Eq. (A.14) can be expressed in terms of gradien
of the pressure logarithiP = V(log(p)) to cast the conservation law of momentum into
the equivalent form

Dq
— VP 0. A.21
Dt +Z (A.21)

Finally, the conservation law of total enthalpy (Eqg. (A.15)) can be replaced by the equat
expressing the entropy production resulting from chemical reactions [46, 47]:

1 Xk
- S i, (A.22)
i=1

where the chemical potential of thieth species is defined agi(T, p)) = h(T) —
Ts(T, pi)-
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