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A new explicit algorithm based on the computational singular perturbation (CSP)
method is presented. This algorithm is specifically designed to solve stiff problems,
and its performance increases with stiffness. The key concept in its structure is the
splitting of the fast from the slow time scales in the problem, realized by embedding
CSP concepts into an explicit scheme. In simple terms, the algorithm marches in
time with only the terms producing the slow time scales, while the contribution of
the terms producing the fast time scales is taken into account at the end of each
integration step as a correction. The new algorithm is designed for the integration of
stiff systems of PDEs by means of explicit schemes. For simplicity in the presentation
and discussion of the different features of the new algorithm, a simple test case is
considered, involving the auto-ignition of a methane/air mixture behind a normal
shock wave, which is described by a system of ODEs. The performance of the new
algorithm (accuracy and computational efficiency) is then compared with the well-
known LSODE package. Its merits when used for the solution of systems of PDEs
are discussed. Although when dealing with a stiff system of ODEs the new algorithm
is shown to provide equal accuracy with that delivered by LSODE at the cost of
higher execution time, the results indicate that its performance could be superior
when facing a stiff system of PDEs. c© 2001 Academic Press
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1. INTRODUCTION

Much attention has recently been devoted to the inclusion of detailed chemical kinetic
mechanisms in the simulation of problems in the fields of combustion, hypersonic flows,
and pollutant control. However, the extremely fast time-scales introduced by detailed
chemistry make the set of governing equations stiff and their numerical solution pro-
hibitively expensive.

The most successful attempts to cope with stiffness have been so far based on implicit
schemes. Such a scheme is the family of multistep, variable order, variable integration step
implicit BDF methods of Gear, Hindmarsh and Brown [1, 48] (available in the LSODE gen-
eral purpose package), which is among the most widely used technique to solve stiff ordinary
differential equations (ODEs). See for example the CHEMKIN [2, 3] and LSENS [4] pack-
ages. Reacting flows in the hypersonic regime [5–7], reactive mixing layers [8], flames [9],
detonations [10–12] and nonequilibrium nozzle flows [13] are modeled by systems of par-
tial differential equations (PDEs) and are frequently solved by a local implicit treatment
of the stiff source terms according to themethod of linesand thetime-stepor operator
splitting approach. Preconditioning techniques are also used to solve steady state problems
efficiently [11, 14, 52].

The implicit treatment of the stiff terms provides solutions which are accurate at the
slow scales and stable at the fast scales [11, 15]. However, a significant fraction of the total
computational time is devoted to solution of the resulting nonlinear systems of algebraic
equations, the dimension of which is proportional to the number of chemical species in the
detailed mechanism. This is the reason why the relatively limited effort required to deal
with simple kinetic mechanisms, such as the one which describes air dissociation in the
hypersonic regime, quickly grows dramatically in the modeling of combustion of complex
hydrocarbon mixtures. This circumstance prompted the search for reduced chemical mech-
anisms obtained by applying the steady-state and partial equilibrium approximations to the
detailed mechanisms [16–22].

In contrast, explicit schemes are simpler to implement; they provide solutions of high-
order accuracy at all scales and do not require the solution of algebraic systems at each
integration step. However, their stability requirements force the maximum integration step
to be of the order of the fastest (smallest) time-scale. When the problem is stiff, the ratio
between the fastest scale and the scale by which the process evolves may grow very large
(i.e., several orders of magnitude). In such a case, the calculations might progress uselessly
at a very slow pace.

There have been several attempts to design explicit schemes able to deal with stiff prob-
lems. Among these, we can cite the contributions of Lebedev [23] and Medovikov [24],
who developed a family of stabilized Runge–Kutta multistage schemes, the Runge–Kutta–
Chebychev (RKC) schemes, possessing extended real negative stability intervals, and the
review article of Verwer [25] on explicit schemes for stiff problems. The stability limits of
RKC schemes is roughly proportional to the square of the number of stages [25]. Therefore,
higher stability limits results in higher CPU costs. As a consequence, the RKC schemes
are efficient only when employed for the solution of mildly stiff problems. In contrast, for
severely stiff problems, i.e. when the driving time-scale is several orders of magnitude slower
than the fast ones, the efficiency of the explicit RKC schemes equals that of the implicit ones.

Here, a new explicit algorithm is presented which circumvents the stability limitations
of the standard and the extended stability explicit schemes by resorting to the concepts
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embodied in the computational singular perturbation (CSP) method. The original ideas
and the mathematical background on which the CSP method is based were presented in
Refs. [26–28, 40]. Successful application of CSP in a number of problems involving chemi-
cal kinetics, combustion, and optimal control are demonstrated in Refs. [29–32] and [33–35,
42], respectively.

Given a stiff system of ODEs, the steps to construct, on the basis of CSP concepts, an
efficient explicit scheme able to deal with very stiff problems are: (i) to split the contributions
of the slow and fast time-scales, (ii) to proceed to the next point in time by integrating
numerically the slow scales only, and (iii) to separately account for the contribution of the
fast scales at the end of each integration step by means of an algebraic correction term.

With stiffness removed, the scheme employed for the integration of the terms, which
contribute the slow scale, can be of explicit type. A fourth-order four-stage Runge–Kutta
scheme is used in the computations reported in this paper. Of course, any other variant can
in principle be used.

Because of this specific feature, the new algorithm can be described as atime-scale
splitting explicit schemeto emphasize its peculiarity with respect to the conventional
operatoror time-step splitting explicit/implicitschemes.

The development of this new explicit, time-scale splitting algorithm is especially done
in view of future applications to systems of stiff PDEs, the stiffness of which is mainly
related to the presence of a source term. Although standard time-step splitting approaches
provide a consistent way of treating the nonlinear coupling between the spatial operator
and the source term, they do not provide (and therefore cannot explicitly take advantage
of) any information on how the slow spatial scales interact with the fast and slow time
scales originated by the source term [36]. In contrast, the proposed time-scale splitting
allows coupling the slow spatial scales directly to the slow time scales originated by the
source term, when the fast time-scales are related to the source term only. Such a treatment
of a stiff problem by an explicit algorithm eliminates the need for implicit or multistep
schemes. As a result, the solution of nonlinear systems at each integration step and the extra
storage required are avoided. The time scale splitting also provides an estimate of the order
of magnitude of the dominant time scale, which can be used both to adjust (maximize)
the integration step for time marching and to set the proper spatial discretization (grid
resolution) in a PDE problem without resorting to an error control strategy [36].

Although the new time-scale splitting algorithm will be ultimately devoted to solve
stiff systems of PDEs, the presentation of its specific features and the discussion of its
performance can be made much simpler when it is employed for the solution of a stiff
system of ODEs. As a test problem, we selected the auto-ignition process occurring behind
a normal, steady shock wave. The combustible mixture considered is methane/air whose
detailed kinetic mechanism involves 49 species and 260 reactions. The performance of the
new algorithm—in terms of accuracy and computational efficiency—will be compared with
that provided by the very well-known and used LSODE package. The numerical results
presented are therefore devoted to demonstrate how and under what circumstances the
new algorithm works and delivers a satisfactory performance. An attempt to compare the
performance of the new scheme to that deliverable by LSODE when dealing with problems
involving PDEs will also be presented.

The structure of the manuscript is as follows. First, a brief outline of the CSP method
will be presented on the basis of which the explicit, time-scale splitting algorithm will
be developed. Next, the governing equations for the physical problem under examination
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will be stated. Finally, the performance of the new explicit algorithm will be reported and
compared with that of the LSODE package.

2. IMPLICIT VS EXPLICIT SCHEMES FOR STIFF PROBLEMS

Consider the nonlinear initial value problem

dy
dt
= g(y), y(0) = y0, (1)

wherey and g are N-dimensional (column) vectors. Suppose that, throughout the time
domain of interest, the Jacobian matrixJi

j = dgi /dyj hasM eigenvalues (not necessarily
real):

• whose magnitude is much larger than the remainingN − M ;
• which have negative real parts;
• which are located away from the imaginary axis;
• which are ordered according to their magnitude:

|λ1| > · · · > |λM | À |λM+1| > · · · > |λN |. (2)

If the time domain of interest is of the order of the reciprocal of the(M + 1)-th eigenvalue,
then Eq. (1) exhibits a boundary-layer type of stiffness.

To illustrate, by a simple example, how and why an implicit scheme is successful in
handling this type of stiff problem, whereas a conventional explicit scheme is bound to fail,
assume that the source termg of Eq. (1) is linear. Thus, Eq. (1) reads as

dy
dt
= g= −Ay y(0) = yo, (3)

whereA is an(N × N) constant matrix fully populated. For simplicity, it is assumed that
all its eigenvalues are distinct, real, positive, and ordered as in Eq. (2). The exact solution
of the linear problem is

y(t) = (a1e−λ1tb1+ · · · + aMe−λM tbM)yo

+ (aM+1e−λM+1tbM+1+ · · · + aNe−λNtbN)yo, (4)

where the column vectorai and the row vectorbi (i = 1, N) are the right and left eigen-
vectors ofA, respectively, and the two terms on the RHS of Eq. (4) correspond to modes
below and above the driving time scale1t defined by the relation

1t ≈ O(λM+1)
−1À O(λ1)

−1. (5)

Now, consider the numerical solution obtained by approximating Eq. (3) first by means of
a first-order backward explicit scheme and then by a first-order backward implicit scheme.
It can be shown that the explicit scheme yields the solution

yex(t) =
{

a1e
ln |1−λ11t |

1t te
iπ t
1t b1+ · · · + aMe

ln |1−λM1t |
1t te

iπ t
1t bM

}
yo

+
{

aM+1e
ln (1−λM+11t)

1t tbM+1+ · · · + aNe
ln (1−λN1t)

1t tbN
}

yo, (6)
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whereas the implicit scheme yields

yim(t) =
{

a1e
− ln (1+λ11t)

1t tb1+ · · · + aMe
− ln (1+λM1t)

1t tbM
}

yo

+
{

aM+1e
− ln (1+λM+11t)

1t tbM+1+ · · · + aNe
− ln (1+λN1t)

1t tbN
}

yo. (7)

An estimate of the stability interval width required by an explicit scheme to solve Eq. (1)
over a time interval of the order of the reciprocal of the(M + 1)-th eigenvalue is given by
the product

z= |λ1|1t ≈ |λ1|/|λM+1|. (8)

However, the simple first-order backward explicit scheme can only afford to integrate
Eq. (1) withz≤ 1, which yields1t ≤ (|λ1|)−1; otherwise the firstM components of Eq. (6)
will become unstable (they will grow exponentially). In a stiff problem,|λM+1|can be several
orders of magnitude smaller than|λ1|, thus justifying the quest for explicit schemes with
an extraordinary large stability limit, that is with very largez values.

In contrast, the firstM components of Eq. (7) are always stable (they decay exponentially),
since the first-order backward implicit scheme isA-stable. The remainingN − M terms in
both Eqs. (6) and (7) are stable and predict with the same accuracy the similar components
of the exact solution (4).

This simple example shows that if the selection of integration step is based on the local
characteristic time scale, individuated by the inverse of|λM+1|, the more efficient explicit
scheme causes an exponential growth of the solution components related to the fast time
scales.

However, at the time period of interest, these components, being exponentially small, do
not contribute to the overall solution of the original problem. Therefore, it is tempting to
devise a strategy aimed at making the fast time-scales disappear from the problem when
they become exhausted, and the evolution of the system depends on the slow modes only.
This way, the numerical solution acquired with an explicit scheme might be made more
efficient than if an implicit scheme was employed.

The next sections will illustrate how the computational singular perturbation method
allows one to pursue this strategy for nonlinear problems as well.

3. STIFF PROBLEMS BY THE CSP METHOD

The CSP method is based on the ability to split theN-dimensional domain ofy in
two subdomains, each of which exhibits certain characteristics. One subdomain isM-
dimensional, contains the fast time scales, and is responsible for the rapid changes the
solution might exhibit. The other subdomain isN − M dimensional, contains the slow time
scales, and is responsible for the smooth behavior of the solution. Wheny goes through
a period of rapid changes (inner region or boundary layer), the component of the velocity
vectorg in the fast subdomain is significant. However, it becomes negligible whenyexhibits
a smooth behavior (outer region).

As the system evolves in time, the two subdomains “rotate.” CSP follows the movement
of the two subdomains and inspects the projection ofg into the fast subdomain. When the
trajectory leaves the inner region, this projection becomes exponentially small. CSP then
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provides a simplified system of equations which produces an approximation of the “exact”
solution but contains no fast time scales. This way, the fast time scales, which cause the
numerical difficulties, are retained only when needed and are discarded when they have no
effect on the evolution of the system. This process is done in such a way that the computed
solution stays within the desired accuracy.

To split the source termg into a fast and a slow component, they-domain must be resolved
in an appropriate manner. LetRN be the domain ofy and [a1(t), . . . ,aN(t)] be a set of
column basis vectors which spanRN at timet . The corresponding set of orthogonal row
vectors is denoted as [b1(t), . . . ,bN(t)]. We assume that the firstM basis vectors span the
fast subdomain. The vectorg can now be expanded in terms of these sets of basis vectors as

dy
dt
=

N∑
i=1

ai f i =
M∑

r=1

ar f r +
N∑

s=M+1

as f s, (9)

where f i= bi · g is the “amplitude” ofg in the “direction” of the basis vectorai , and the
indicesr ands will denoter apid andslow modes, respectively. The projection ofg onto
the fast subdomain being small can be expressed by theM equations (of partial equilibrium
state relations)

f r ≈ 0 r = 1,M. (10)

The M equations (10) describe the manifold in the space ofy on which the trajectory in
the outer region moves according to the equation

dy
dt
≈

N∑
s=M+1

as f s. (11)

In this simplified form, the fast modes are absent so that only the slow time-scales
are present. As a result, the integration with an explicit scheme can advance with larger
integration steps. In order for the integration to be stable, this integration step must be of
the order of the reciprocal of the magnitude of the largest of theN − M slow eigenvalues
of J (Eq. (5)). More details about the CSP method can be found in the Refs. [37–39].

4. STEPS TOWARD THE TIME-SCALE SPLITTING ALGORITHM

There are three basic steps to build the new time-scale splitting, explicit algorithm:
(i) identification of the numberM of exhausted modes at a given time, (ii) construction of
the CSP basis vectors and (iii) integration of the stiff ODE system according to a time-scale
explicit algorithm.

4.1. Detection of the Exhausted Fast Modes

The criterion is the following. Let us first introduce an error vectoryerror built on the basis
of the solution vectory, as

yi
error= ε i

rel|yi | + ε i
abs, i = 1, N (12)
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whereε i
rel and ε i

abs are the maximum relative and absolute errors on thei -th variable,
respectively. The numberM of fast modes which, within the limits of accuracy specified
by the given error vector, are considered exhausted is defined as the largest integer lying
between 1 andN which satisfies the inequality∣∣∣∣∣τ(M + 1)

M∑
j=1

a j f j

∣∣∣∣∣ < yerror, (13)

whereτ(M + 1), the time scale related to the (M + 1)-th CSP mode, is defined as

τ(M + 1) =
∣∣∣∣ 1

λ(M + 1)

∣∣∣∣. (14)

The inequality (13) guarantees that the trajectory remains close to the manifold within
specified bounds and is not diverted far from it by marching in time according to the
simplified nonstiff Eq. (11). In fact, the omission of theM fast modes in the integration
along one time step introduces a local error which can be estimated as

Er = O

(
1t

M∑
j=1

a j f j

)
. (15)

Given the condition (13), it follows that

Er = O

(
1t yi

err

τ(M + 1)

)
. (16)

4.2. Construction of the Basis Vectors

The algorithm for the construction of the basis vectorsar andbr (r = 1,M), which are
desired to define the fast subdomain in the problem, is provided by the recursive formulas
reported here below from Refs. [26–28],

A(s1+ 1) =
[
−d A(s1)

dt
+ J A(s1)

]{
B

[
−d A(s1)

dt
+ J A(s1)

]}−1

B, J = const (17)

B(s2+ 1) =
{[

d B(s2)

dt
+ B(s2)J

]
A

}−1[d B(s2)

dt
+ B(s2)J

]
A, J = const, (18)

where the matricesA andB collect the right and leftM fast basis vectors, respectively,

A = ( a1 · · · aM ); B = ( b1 · · · bM )T

and the initial guessesA(0) andB(0) are, in principle, arbitrary matrices. The refinements
(17) and (18) are not coupled to each other; that is, the number ofs1-refinements might not be
equal to the number ofs2-refinements. Independent of the number ofs1- ands2-refinements,
the resulting vectors produce an orthonormal basis.

The larger the number of thes1-refinements (Eq. 17) ands2-refinements (Eq. 18) the more
accurate the approximation of the fast subdomain by the basis vectorsar andbr (r = 1,M).
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In fact, thes1(s2)-refinements tend to purify the slow (fast) part in the RHS of Eq. (9) from
the fast (slow) time scales. Each of thes1, s2-refinements becomes more effective as the
time-scale separation, defined as

ε =
∣∣∣∣λ(M + 1)

λ(M)

∣∣∣∣, (19)

becomes more wide.
Regarding the simplified problem, Eq. (11), thes1-refinements tend to improve its stability

while the s2-refinements tend to improve the accuracy of the approximate solution by
allowing the exponential decay of the fast amplitudesf r (r = 1,M) to smaller values.

The presence of the time derivatives in Eqs. (17 and 18) signifies the fact that the fast
subdomain rotates with time. It is only when the problem is linear, i.e.,g= Ay, that the
fast subdomain is fixed with time, being defined by theM eigenvectors of the constant
matrix A, which correspond to itsM largest eigenvalues. In such a case, when trying to
approximate the fast subdomain the time derivative terms can be omitted from Eqs. (17) and
(18) without any loss in stability or accuracy, both being improved with the number of the
s1 ands2-refinements. The simplified recursive formulas constitute then the block-power
method for approximating the space spanned by theM fast eigenvectors [37–39, 44].

When the problem is nonlinear, the rotation of the fast subdomain with time must be
taken into account, by including the time derivative terms. In the outer region (i.e., away
from the fast transients), Eqs. (17) and (18) indicate that these terms are of higher order
with respect toJ A andB J. Therefore, in a nonlinear problem their omission will provide
leading order accuracy only. Additional refinements (to the first) will not produce any
improvement.

However, following the discussion of the linear case, when Eq. (1) is weakly nonlinear
(as in the induction and recombination regions in a flame), it is possible to improve the
stability and the accuracy of the simplified Eq. (11) by additional refinements.

In the new explicit scheme the basis vectors are computed by neglecting the time derivative
terms but by allowing more than one refinement to be executed. As was noted previously,
this assumption reduces the refinements (17–18) to the block-power iterations. With such a
strategy, the required extra storage and calculations are avoided, resulting in a more efficient
scheme. However, from the discussion above it is clear that this improvement is accompanied
by the shortcoming of possibly not being able to fully identify the fast subdomain, that is, the
maximum possible number of exhausted modes. As a result, the integration might proceed
with a time step smaller than the locally characteristic scale of the problem.

The execution of the refinements (17–18) can be combined with the identification of the
exhausted modes. The related algorithm is presented next, by considering the case where
all eigenvalues ofJ are real. The generalized version dealing with complex eigenvalues
is a straightforward extension [45]. According to this algorithm, the block-power method
for computing the basis vectors, which approximates the fast subdomain, is replaced by
the simple power method, according to which theM fast eigenvectors are computed one
at a time, starting with the ones that correspond to the fastest time-scale [45]. At the first
time step, the basis vectorsar andbr are arbitrary, while at subsequent steps the vectors
computed at the start of the previous integration step can be used as an initial guess. With
this algorithm, good estimates of theM fast time-scales (r = 1,M) and of the fastest of the
slow scales are obtained as well.
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The algorithm is as follows:

ALGORITHM 1 (Find CSP Basis Vectors and Time Scales)

Begin
Initial settings:
1y= 0, Jm=1

L = Jm=1
R = J = grad(g),P(m=0) = I

Loop on m= 1, N
Loop on S to converge over the value ofτm

m

Loop on s1 to improve the stability of the integration
Refine vectorsar

qm = J(m)L a(s1)
m

(τm
m )L = (bm · qm)

−1

a(s1+1)
m = qm(τ

m
m )L

End loop ons1

Loop on s2 to improve the accuracy of the integration
Refinebr vectors

qm = bm
(s2)

J(m)R

(τm
m )R = (qm · am)

−1

bm
(s2+1) = (τm

m )Rqm

End loop ons2

If[ (τm
m )R has converged] then go toB

End loop on S
Label (B)
τ(m) = (τm

m )R

Enforce the criterion to declare a mode exhausted
If[ m≥ 2 and|τ(m)1y| ≥ yerror] then go toA

Update the projection matrix
P(m) = P(m−1) − ambm (no sum on m)

Update the fast mode contribution
1y= 1y− am f m (no sum on m)
Note: fm is computed as follows:

i f m > Mold then fm = bm · g
or:
i f m ≤ Mold then fm = f m

∞:=−τ(m)bmJ(m)R g
Deflate the last mode found from the Jacobian

J(m+1)
L = P(m)J

J(m+1)
R = JP(m)

End loop on m
Label (A)
M = m− 2 Number of exhausted modes
τ(M + 1) = τ(m− 1) Driving time-scale

P(M) = P(M+1) + a(M+1)b
(M+1) Correct projection matrix

End.

The rate of convergence of theS-iterations increases with the ratio between the time-
scales of two consecutive modes. Thus, if two time-scales are close to one another, the
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convergence of the related two basis vectors may become extremely slow. This circum-
stance does not affect the accuracy of the scheme, since poorly approximated basis vectors
cannot identify the exhausted modes. Therefore, no simplification with respect to the re-
lated amplitudes which are still present in Eq. (11), is allowed. In addition, there is no
diminishing in the efficiency of the scheme, since the appearance of two time scales close
to one another indicates that the corresponding two amplitudes decay with a similar rate.
As a result, no real gain from increasing the time step will be achieved if the first of the
two amplitudes is identified as exhausted by allowing a large number of refinements. This
justifies the enforcement of a maximum number ofS-iterations, say 10, independent of the
achieved convergence ofτ(m). In any case, the basis keeps being improved as the integration
progresses in time.

As noted, the effect of the inners1- ands2-refinements is to stabilize and improve the
estimate of the basis vectors. It has been observed that the algorithm improves its overall
performance if at least three iterations are allowed for both thear andbr basis. The extra
cost for the iterations is largely compensated by the more stable evolution of the number of
exhausted modes.

To improve the stability of the calculation, care must be taken in the evaluation of the
amplitude f m of an exhausted mode, if computed as the projection ofg on the fast di-
rections (f m = bm · g). In fact, the amplitude becomes small because competing effects
of usually large size cancel each other. Under these circumstances, the machine precision
might become insufficient to guarantee an accurate evaluation of the amplitudef m. A better
estimate is found by replacingf m with its asymptotic valuef m

∞, defined later in Eq. (25).
In contrast, the amplitude of a slow mode involves no significant cancellations and can
therefore be accurately computed by projecting the source term onto the slow directions.
This discussion motivates the strategy adopted in the algorithm to computef m.

4.3. Integration of the Stiff ODE System

Let us assume that, at a certain stage of the process evolution, the trajectory has exited
the inner region and the firstM column vectorar spans the fast subdomain ofy, while the
remainingN − M column vectorsas span the slow subdomain ofy. With these definitions,
the original ODE system (9) can also be written as

dy
dt
=

M∑
r=1

ar f r + Pg, (20)

where the projection matrixP is defined as

P = I −
M∑

r=1

ar f r (21)

mapsg onto the slow subdomain ofy. The time change ofy is obtained by integrating
system (20) over an interval of time1t , according to the expression

y(T +1t)− y(T) =
∫ T+1t

T

M∑
r=1

ar f r dt +
∫ T+1t

T
Pgdt. (22)
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As demonstrated in Refs. [26–28], the amplitudes of the fast modesf r evolve in time
according to the equations

d f r

dt
=

M∑
r ′=1

λr
r ′
[

f r ′ − f r ′
∞
]

r = 1,M, (23)

where

λi
j =

(
dbi

dt
+ bi J

)
a j . (24)

Given that the trajectory is in the outer (slow) region,f r ′ reaches the asymptotically
small valuef r ′

∞ which expresses the contribution of the slow scales to the amplitude of the
fast modes (“mode mixing”) and is defined as

f r ′
∞ = −

M∑
r=1

τ r ′
r

N∑
s=M+1

λr
s f s, (25)

and the matrixτ r ′
r is defined as the inverse ofλr

r ′ .
Solving Eq. (23) forf r and substituting it into the integral (22), yields

y(T +1t) = y(T)+
∫ T+1t

T

M∑
r,r ′=1

ar τ
r
r ′

d f r ′

dt
dt +

∫ T+1t

T

M∑
r=1

ar f r
∞ dt +

∫ T+1t

T
Pgdt.

(26)

Integrating by parts and using Eq. (25), yields

y(T +1t) = y(T)+
M∑

r,r ′=1

ar τ
r
r ′ f

r ′|t=T +1t −
M∑

r,r ′=1

ar τ
r
r ′ f

r ′ |t=T

−
∫ T+1t

T

M∑
r,r ′=1

d

dt

[
ar τ

r
r ′
]

f r ′ dt+
∫ T+1t

T

M∑
r=1

ar f r
∞ dt+

∫ T+1t

T
Pgdt. (27)

In the outer region, where the characteristic time-scale isO(τ (M + 1)) and τ r
r ′ ≈

O(τ (M)), one can derive the estimates

d

dt

[
ar τ

r
r ′
] ≈ O(εar ) (28)

and

τ r
r ′λ

r ′
s ≈ O(εs2) (29)

from beingλr ′
s ≈ O(εs2−1), which allows us to consider the first two integrals on the RHS

of Eq. (27) small. Moreover, the quantity
∑M

r,r ′=1 ar τ
r
r ′ f

r ′ can be assumed much smaller
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at t = T +1t than att = T , because of the exponential decay of the mode amplitudef r ′

along1t = O(τ (M + 1)) with a rate ofτ(M). Therefore, Eq. (27) can be written as

y(T +1t) = y(T)−
M∑

r,r ′=1

ar τ
r
r ′ |t=T f r ′(T)+

∫ T+1t

T
Pgdt + Small, (30)

where

Small=
M∑

r,r ′=1

ar τ
r
r ′ |t=T+1t f r ′ +

∫ T+1t

T

M∑
r=1

ar f r
∞ dt −

∫ T+1t

T

M∑
r,r ′=1

d

dt

[
ar τ

r
r ′
]

f r ′ dt (31)

collects all small contributions. Eq. (30), with theSmallterms neglected, is in a form suited
to write a time-scale splitting explicit scheme of integration, consisting of two steps. First,
the contribution of the slow modes to the time change ofy is computed by the expression

ỹ(T +1t) = y(T)+
∫ T+1t

T
P(T)g(t) dt, (32)

whereP(T) is assumed constant betweenT andT +1t . Then, following Eq. (30), the
correction that results from the omission of the fast modes from the integration in Eq. (32)
is accounted by the expression

y(T +1t) = ỹ(T +1t)−
M∑

r,r ′=1

ar τ
r
r ′ |t=T f̂ r ′ . (33)

The second term at the RHS of Eq. (33) is referred to as “radical correction” in Ref. [26]:

1yfast=
M∑

r,r ′=1

ar τ
r
r ′ |t=T f̂ r ′ . (34)

However, the off-diagonal terms of the matrixτ r
r ′ can be neglected in Eq. (34), so thatτ r

r ′

can be estimated as

τ r
r ′ ≈ δr

r ′τ(r ), (35)

where the local characteristic time-scalesτ(r ) are found by Algorithm 1, andδr
r ′ is the

Kronecker symbol. The off-diagonal terms can be neglected on the grounds that the basis
vectors are usually a small perturbation of the eigenvectors ofJ. This makesλr

r ′ , introduced
in Eq. (23), and its inverseτ r

r ′ diagonally dominant matrices. This approximation allows us
to reduce both computing time and storage requirements.

Numerical tests have clearly shown that to make the algorithm stable, it is mandatory to
evaluate the amplitude of the fast modesf̂ r according to the expression

f̂ r = br (T) · g[ỹ(T +1t)], (36)

which requires the computation of the source termg at the state valuẽy(T +1t) produced
by Eq. (32) and the projection of it onto the basis vectorbr (T) found at the beginning of
the integration step.
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Eq. (33) introduces a correction which is within the bounds imposed for the desired
accuracy (Eq. (13)) and is related to Eq. (10), the latter describing the manifold on which
the trajectory—moving at the pace set by the slow scales—is confined by the action of the
fast time-scales.

In particular, the simplifications implied by Eq. (32) move the trajectory slightly off
this manifold. Eq. (33) corrects this deviation at the end of the time step, by bringing the
trajectory back on the manifold. As Eq. (33) shows, this correction takes place along the
fast directions only. It is easy to show that Eq. (33) is equivalent to one Newton iteration of
Eq. (10).

The time-scale splitting, represented by Eqs. (32) and (33), becomes more and more
accurate as the time-scale separationε, defined in Eq. (19), decreases.

4.4. Choice of the Integration Step

The correct order of magnitude of the time-scale over which the slow contribution evolves
is provided by the inverse of|λ(M + 1)|. Therefore, the actual integration step of integration
1t is evaluated as follows. The linear stability analysis of the time-scale splitting explicit
scheme prescribes

|λ(M + 1)|1t < 1. (37)

Therefore, a tentative integration step̃1t is defined as

1̃t = α(|λ(M + 1)|)−1 = α|τ(M + 1)| α < 1, (38)

whereα = 1t/|τ(M + 1)| is a safety coefficient against nonlinear effects. As a conse-
quence, the error that results from the omission of the fast modes—defined in Eq. (16)—can
be estimated as

Er = O
(
α yi

err

)
. (39)

Next, the guessed̃1t is compared to the integration step1told used at the previous
integration step to produce the new integration step according to the following heuristic
strategy

if(1̃t > 1told) then1t = min(1.51told, 1̃t) (40)

if(1̃t < 1told) then1t = 1̃t . (41)

The rationale behind these formulas is the following. When at a certain point in time it
is found that a number of fast time-scales become exhausted, the integration can proceed
with the corresponding fast components of the source term removed. As a result, the local
characteristic time scale (driving scale)1t increases. In this case, the stability condition of
the explicit integration scheme makes it possible to take an integration step1t larger than
the one adopted at the previous integration step (1told). In the explicit time-scale splitting
algorithm presented here, this integration step change follows a gradual increase as stated
by the condition (40). In contrast, when at the end of an integration step it is found that
a number of fast modes are reactivated, that means that the solution accuracy has been
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degraded and that the integration step has to be repeated (“resetting” procedure) taking into
account the modes previously removed. Consequently, the local characteristic time-scale
decreases, being the fastest scale of the restored modes. In this case, the integration step must
be decreased instantaneously in order to comply with the stability limits. This motivates the
adoption of formula (41).

The local error of an explicit scheme is in general of the order of(1t/τ)n f (y), where
n− 1 is the order of the method,τ is the fastest time-scale in the problem, and the function
f (y)mainly depends on the particular scheme employed and the degree of the nonlinearity
of the source term (Ref. [1]). It follows that the selection of the time step according to
Eq. (38) introduces a local error in the explicit integration of the slow part, Eq. (32), which
can be estimated as

Ei
s = O(αn f i (y)). (42)

4.5. Evaluation of the Jacobian When the Mixture Contains
Species in Low Concentration

The construction of the simplified nonstiff Eq. (11) is based on the CSP splitting between
the fast and slow subdomains. To perform the splitting correctly, a reliable Jacobian (i.e.,
derivatives of the source term with respect to the unknowns) to be fed into Eqs. (17) and
(18) is needed. The Jacobian can be evaluated either analytically or numerically by finite
differences. In this work, we followed the second option.

Unfortunately, the Jacobian becomes ill-conditioned when the process develops very
small values for some unknowns (smaller than 10−13 if double precision is used) while
other unknowns—such as pressure or velocity—have order of magnitude one. Care in the
evaluation of the finite differences involved in the Jacobian might alleviate the problem, but
not solve it altogether.

The basis vectors built upon such a Jacobian are not accurate enough and might take the
calculation to a stop, because some of the unknowns (species in low concentration) become
negative. Species in low concentration cannot simply be removed once and for all from the
calculation, since they might not remain small at later times. For example, during most of
the induction period, the intermediate species have very low concentrations, whereas their
concentration abruptly increases shortly ahead the reaction zone.

Therefore, the problem of the ill-conditioned Jacobian because of species in low concen-
tration has been circumvented as follows: if (i) one species, sayyi , has a low concentration,
and (ii) its corresponding source termgi

slow in Eq. (11) is negative—meaning thatyi is
attaining even lower values—then the set of ODE is modified so as to forceyi to remain
constant at its last positive value. In the CSP terminology, we force the mode associated to
the i -th species to become a “dormant” [26] mode. This is obtained as follows:

1. the source term componentgi
slow and the fast mode correction element1yi

fast in Eq. (34)
are both set equal to zero;

2. the off-diagonal elements of the Jacobian in thei -th row andi -th column are also set
equal to zero (that is,Ji

j = J j
i = 0, j = 1, N, i 6= j ), and a small value is attributed to the

diagonal element (that is,Ji
i = 10−20). By construction, the diagonal elementJi

i becomes
the eigenvalue of the mode driving the small speciesyi . This forces the species to change
very slowly in time and, in the limit, to remain constant as desired.
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5. THE TIME-SCALE SPLITTING EXPLICIT ALGORITHM

The time-scale splitting algorithm is organized in two substeps according to the time-
scale splitting between fast and slow modes presented by Eqs. (32) and (33). Starting from
a known value ofy at timeT , the algorithm proceeds to the next timeT +1t as explained
below.

ALGORITHM 2 (The Time-Scale Splitting Explicit Algorithm)

Begin

Step I: Slow Time Scales Contribution

1. Evaluate the source termg(T) = g[y(T)]
2. Find the numberM [y(T)] of “exhausted” fast modes, the local characteristic time

scalesτ(r )[y(T)] (r = 1,M + 1), and the corresponding basis vectors spanning the fast
subdomainar [y(T)], br [y(T)], with r = 1,M [y(T)];

3. Build the projection matrixP[y(T)] = I −∑M [y(T)]
r=1 ar [y(T)]b

r [y(T)];
4. Integrate numerically between timeT and T +1t the nonstiff differential equa-

tion (32)

dy
dt
= P[y(T)]g[y(t)] (43)

from the initial conditiony(T) to the final valueỹ(T +1t), by means of any explicit
scheme, of any order of accuracy, with an integration step1t whose order of magnitude is
τ(M + 1). The integration scheme adopted in our work has been the explicit Runge–Kutta,
fourth order, 4-stages scheme [1]. The integration step1t actually used is defined according
to the relations (40 and 41). The valueỹ(T +1t) accounts for the contribution of the slow
time-scales only and will be corrected byStep II if exhausted fast modes are present.

The projection matrix Pis kept constantalong the integration step at the value obtained
for the initial y(T). This assumption is sufficiently accurate since the basis vectors evolve
over the slow time-scale.

Step II: Fast Time Scales Contribution (undertaken only ifM 6= 0)
According to Eq. (33), the contribution of the fast modes to leading order accuracy can

be evaluated as follows:
1. Computeg(T +1t) = g[ỹ(T +1t)];
2. Evaluate the fast modes’ amplitudef r (T +1t) = br [y(T)] · g(T +1t);
3. Correct for the contribution of the fast time-scales:

y(T +1t) = ỹ(T +1t)−1yfast, (44)

where1yfast is evaluated according to the approximation (35) as

1yfast=
M [y(T)]∑

r=1

ar [y(T)]τ(r )[y(T)] f r [g(T +1t)] (45)

End.

At the beginning of the calculation, the physical process under examination evolves
according to the fastest scale and thus the number of exhausted modes is zero (M = 0).
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This will cause the integration step to be scaled according to the largest eigenvalue of the
Jacobian ofg. In this circumstance the algorithm reduces to an explicit scheme to advance
Eq. (43) with P = I , that is, to advance the original unsplit ODE. As the fast processes
become exhausted,M increases and Eq. (43) advances with larger and larger integration
steps as determined by Eq. (41).

6. THE TEST PROBLEM

The validation of the new algorithm is carried out on the basis of the auto-ignition of a
stoichiometric mixture of methane and air behind a steady, normal shock wave. The flow is
assumed to be steady, inviscid, and nonconducting. The kinetics of the methane/air mixture
is governed by a detailed mechanism [50] of finite rate chemical kinetics, which involves
260 reactions, 49 species, and 4 elements.

With these assumptions, the relevant flow model equations are the reactive Euler equations
which form a set of PDEs. To evaluate the properties of the new algorithm, the reactive
Euler equations are reduced to a set of ODEs, by assuming that the flow is one-dimensional,
which can be quickly solved by marching in space.

The thermochemical model adopted for the gaseous mixtures and the details of the
chemical kinetics model are reported in the Appendix. This flow displays the main features
related to the subject under study, but it remains simple enough to allow a thorough analysis
of the performance of the new scheme.

The nonequilibrium state of a mixture ofNs ideal gases can be defined by means of two
state variables and the mass fraction of each gaseous species. Density,ρ, and enthalpy,h, can
be adopted as thermodynamic state variables, being the most natural to express conservation
laws. However, the logarithm of pressureP = log p and the entropy of the mixtures
can be also selected (this yields a formulation more suited to describe wave propagation
phenomena). In this event, the energy equation is replaced by an equation for entropy
transport and production, obtained by manipulating the Gibbs law of thermochemistry.
Under these assumptions, the set of modified reactive Euler equations formed by Eq. (A.20),
Eq. (A.21), Eq. (A.22), and Eqs. (A.18), derived in the Appendix, can thus be written as

DP

Dt
+ γ∇ · q = −γ ṗ

Dq
Dt
+ a2

γ
∇P = 0

(46)
Ds

Dt
= ṡ

Dyi

Dt
= ẏi ,

where q is the flow velocity vector, and the source terms appearing at the RHS of Eqs. (46)
are defined according to the expressions reported in the Appendix as

ṗ =
Ns∑
i

(
hi

cpT
− Ri

R

)
ẏi =

Ns∑
i

p̂i ẏi
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ṡ = − 1

T

Ns∑
i=1

µi ẏi (47)

ẏi = ċiMi

ρ
.

The temperature is found by inverting numerically the caloric equation of state Eq. (A.7).
If the flow is assumed steady and the flow velocity exactly orthogonal to the shock front

(and directed along thex-axis), then Eqs. (46) can be further simplified to yield the set of
ODEs

Aw,x = ẇ (48)

where

A =


u γ 0 0T

a2

γ
u 0 0T

0 0 u 0T

0 0 0 Iu

 w=

P
u
s
yi

 ẇ=


−γ ṗ

0
ṡ
ẏi

 .

Eqs. (48) includeNs + 3 equations for theNs + 3 unknowns: logarithm of pressureP,
flow velocityu, entropys, andNs species mass fractionsyi (i = 1, Ns).

Therefore, since the methane/air mixture considered involvesNs = 49 species, the total
dimension of the system isN = Ns + 3= 52. Four elemental conservation laws (for the
4 elements:C, H,O, N) set the number of linearly independent CSP modes equal toN −
E = 52− 4= 48.

By premultiplying Eqs. (48) with the inverse matrix ofA, we obtain

w,x = A−1ẇ= g, (49)

where

g=
( −γM2

(M2− 1)

ṗ

u

ṗ

(M2− 1)

ṡ

u

ẏi

u

)T

, (50)

andM = u/a is the flow Mach number. Eq. (49) has the same form as Eq. (1), where vector
w replacesy. Moreover, since the independent variable isx (space) instead oft (time), the
time scalesτ must be interpreted as spatial scales and the eigenvaluesλ have the dimensions
of the reciprocal of length instead of time.

7. RESULTS

The performance analysis of the new scheme is evaluated in terms of accuracy, com-
putational efficiency, and consistency. Its performance is compared against that of the
LSODE [48] package. All calculations were carried out by using a Macintosh G3/300
computer and the ABSOFT FORTRAN compiler.
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7.1. Design and Performance Parameters

A parametric investigation has been carried out to assess the performance of the new
algorithm. The main design parameters which control the algorithm operations are perturbed
one at the time to identify their effects and relative importance. To simplify the presentation
of the results, the main design parameters of the algorithm are summarized in the following.
Then the performance parameters used will be enlisted to to compare the different options.

7.1.1. Design Parameters

An LSODE user can define the level of accuracy of the calculation by varying two
(possibly vector) parametersrtol andatol,which control the maximum relative and absolute
errors on each unknown tolerated at each step of the calculation. The size of the integration
step and the order of accuracy of the scheme of integration are adjusted algorithmically
so that the specified level of accuracy is obtained. In all calculations reported herein, the
Jacobian is generated numerically by LSODE using the source term routine provided by
the user.

A CSP user can control the level of accuracy of the calculation by setting bounds on two
sources of errors, i.e., the numerical integration and the omission of the exhausted ampli-
tudes. First, the specific explicit method selected for the integration of the slow components
sets an accuracy level, the exact magnitude of which is controlled by the size of the inte-
gration step as a fractionα of the local driving scaleτ(M + 1). In addition, the accuracy
can be controlled by the two (possibly vector) parametersεrel andεabs, which define the
number of fast modes deemed exhausted and therefore neglected from the integration. Note
that the mechanism by whichεrel andεabs affect the solution accuracy is different from that
of rtol andatol; the former specify the maximum allowed error in the computation of the
time derivative of the solution, while the latter specify the maximum allowed error in the
solution itself.

Given an explicit integration method, the parametersα, εrel, andεabs can in principle
be adjusted so as to satisfy somertol andatol as done in LSODE. The association of the
three parametersα, εrel , andεabs on the solution accuracy depends on the particular explicit
integration method employed.

In fact, the combined local error introduced by the omission of the exhausted amplitudes
(Eq. (39)) and by the explicit integration scheme (Eq. (42)) is

Ei
tot = O

(
α
[
ε i

rel|yi | + ε i
abs

])+ O(αn f i (y)). (51)

Note that the first term in the expression above gives a direct estimate of the local error,
while from the second term only an upper bound can be obtained, since the functionf i (y) is
in general very complex to compute. In the following, the results of the parametric analysis
reported will clearly illustrate the effects of the three parameters on the solution accuracy.

7.1.2. Performance Parameters

For this specific reactive flow problem three conservation laws of global mass flow,
momentum, and energy have to be satisfied, together with the conservation ofE elements.
Moreover, if the composition is defined by using nondimensional (mass or mole) fractions
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TABLE I

Definition of Test Case

Mixture ϕ T∞ [K] p∞ [atm] L [m]

CH4/Air 1.0 1000 0.6 0.80

then these fractions must always sum up to one, and they must always be nonnegative. Thus,
following the terminology of Ref. [55–57], the numerical solution should satisfy 3+ E + 1
invariants andNs inequalities at each integration step. However, both LSODE and the CSP
algorithms cannot exactly satisfy these properties, and there has been no attempt to eliminate
unknowns by explicitly resorting to these (linear and nonlinear) invariant relations.

Instead, the deviation of the computed invariants from the exact values will provide useful
measures of the numerical errors. To this aim, we will report the relative error on mass flow,
err (scaled with respect to the initial value) averaged over the integration domain.

To make the presentation of the properties of the algorithm complete, additional perfor-
mance parameters will be introduced, such as (i) the number of integration stepsNstep, (ii)
the number of function evaluationsNf e, and (iii) the number of Jacobian evaluationsNje

needed to complete the integration.

7.2. Free-Stream Conditions

The selected values of pressurep∞ and temperatureT∞ ahead of the shock are reported
in Table I, whereϕ is the equivalence ratio of the mixture andL the distance from the shock
where theNO species reaches equilibrium.

The Chapman–Jouguet (CJ) detonation state parameters can be obtained by using the
SP-273 package [58]. By definition, the burned mixture downstream of a CJ detonation is
in thermodynamic equilibrium and has an “equilibrium” flow Mach number of one. The CJ
parameters corresponding to the free-stream conditions specified in Table I are reported in
Table II.

However, for this specific mixture and free-stream conditions, it is impossible to compute
the CJ detonation structure by means of a finite rate chemistry, steady-state flow model
because the detonation structure develops a singularity before equilibrium is attained, as
will be shown in the next section.

Therefore, the test case involves a free-stream Mach numberM∞ ahead of the normal
shock slightly higher than the CJ value ofMCJ = 2.7931. We selected forM∞ the value
2.810, since this is the minimum value allowing to reach equilibrium. This value yields,
for the values of pressurep∞ and temperatureT∞ selected in Table I, an “overdriven”
detonation wave slightly stronger than the corresponding CJ detonation.

TABLE II

CJ Detonation; Species Are Expressed in Mole Fractions

Type MCJ Vdet [m/s] p [atm] T [K] H 2O NO

C.J. 2.7931 1741.6 3.0981 2892.7 0.147 0.01204
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FIG. 1. OD detonation: evolution of temperature and heat released per unit time.

7.3. Numerical Solution by LSODE

The package LSODE is used to obtain the reference solution. The solution is documented
by means of plots starting at the post-shock state and ending whereNOattains its equilibrium
value. The evolution in space of the mixture temperatureT and of the heat released per unit
time is shown in Fig. 1. The largest heat release clearly occurs inside the reaction zone lying
between 2.e-03 m and 1.e-02 m. Thus, the reaction zone is about 8 mm wide compared with
the 1 m width of the integration domain.

The plots ofNO andCH4 mass fractions are reported in Fig. 2. These data show that
methane is quickly and almost fully consumed within the reaction zone, whereasNO,
because of its slow kinetics, keeps increasing in the long-lasting phase downstream of the
reaction zone.

FIG. 2. OD detonation: evolution of CH4 and NO mass fractions.
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FIG. 3. OD detonation: evolution of flow Mach numberM .

The formation ofNOis an endothermic process, as demonstrated by the slight temperature
drop noticeable in Fig. 1. This causes the “frozen” flow Mach numberM = u/a to first
attain a maximum value right after the reaction zone (pointA in Fig. 3 and then to relax to
a lower value at equilibrium (pointB in Fig. 3.)

Under this circumstance, the CJ state cannot be found as the numerical solution of the
steady-state, nonequilibrium, reactive Euler equations, since the model becomes singular
(the denominator of Eq. (50) becomes zero) as soon as the flow becomes “frozen” sonic.
In fact, if one tries to attain at the CJ condition starting from free-stream Mach numbers
M∞ higher thanMCJ, then the “frozen” sonic condition will first occur at the location of
maximum Mach (pointA), that is far earlier than the achievement of the equilibrium stage
(point B).

As previously noted, the lowest free-stream Mach numberM∞ allowing a complete
numerical solution for the free-stream pressure and temperature given in Table I was found
to be 2.810. For thisM∞, the maximum value of Mach number found at pointA is 0.923
and at pointB is 0.8737, which is much lower than unity (Fig. 3). Therefore, the slowest
detonation found numerically is of the “Over-Driven” type (OD). The detonation parameters
of the OD detonation are reported in Table III which may be compared to Table II to
appreciate their deviation from the corresponding CJ values.

The effect ofrtol in the solution accuracy is displayed in Fig. 4, where the evolution of the
temperature and the relative error on mass flow downstream of the reaction zone is shown for

TABLE III

OD Detonation

Type M∞ Vdet [m/s] p [atm] T [K] H 2O NO

O.D. 2.8100 1750.2 3.4247 2922.4 0.146 0.01239

Note.Species are expressed in mole fractions; frozen Mach number at
equilibrium is 0.8737; and max Mach number is 0.923.
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FIG. 4. LSODE’s converges as the error controls are tightened; convergence is obtained withrtol= 1.e− 6.

atol = 1.e− 14. Given that asrtol decreases the solution accuracy increases, the results of
Fig. 4 demonstrate that a converged solution is obtained withrtol = 1.e− 6, which yields
an average error of the orderO(10−6). As the results of Table IV show, increasing the
required accuracy (smallerrtol) asks for more integration steps and functions and Jacobian
evaluations.

The LSODE solution obtained withrtol = 1.e− 6 (requiring 1010 integration steps,
12492 function evaluations, 210 Jacobian evaluation, and a total of CPU time of 36 s) will
be used as a reference for the evaluation of the CSP-explicit algorithm’s performance.

7.4. Numerical Solution by the New Explicit Schemes

The following sections will first illustrate how the dynamics of the system can be de-
scribed and exploited by the new scheme. Then its performance, in terms of accuracy and
computational efficiency, will be evaluated.

7.4.1. Dynamics of Modes

The detonation structure can be analyzed from the CSP point of view, mainly by inspection
of the evolution in time of the number of exhausted modesM , shown in Fig. 5. Right

TABLE IV

LSODE’s Package Performance

CPU CPU CPU CPU
rtol atol ind. reac. recom. tot. err Nst Nf e Nje

1.e-4 1.e-14 7.85s 7.32s 16.8s 32.0s −4.51e-04 698 11540 201
1.e-5 1.e-14 8.42s 9.77s 9.25s 27.4s −2.99e-05 756 9591 162
1.e-6 1.e-14 12.4s 11.5s 12.3s 36.2s +3.83e-06 1010 12492 210
1.e-7 1.e-14 16.3s 15.6s 28.0s 59.8s −4.07e-07 1506 21125 362
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FIG. 5. Exhausted modes evolution as obtained by settingα = 0.15 and 0.45.

behind the shock wave, the flow is under strong nonequilibrium conditions. Thus, there are
no exhausted modes andM = 0. However, as the auto-ignition proceeds, more and more
modes become exhausted. Three regions exist whereM stays rather constant:

Induction. The first region starts right after the initial transient which follows the shock
perturbation at 1.e-04 m and ends at 2.e-03 m. It corresponds to the induction period during
which the radicals form. According to the prescribed accuracy, the number of the exhausted
modes ranges from 15 to 20. Therefore, in this region an equilibrium manifold forms.
This suggests that during induction 15 to 20 species are in quasi steady-state and that
reduced models, involving 48− 15= 33 to 48− 20= 28 slowly varying species, can be
constructed.

Reaction. When a sufficient pool of intermediates forms, the reaction zone starts; the
major chemical activity occurs which can be identified by the fuel breakdown and by the
sudden temperature rise. This region lies between 2.e-03 m to 1.e-02 m, and the number
of exhausted modes drops to 7–15, meaning that the degree of stiffness has been locally
reduced. Moreover, the nonlinear effects are stronger because of the sensitivity of the
reaction rates to the large changes in temperature. As shown in the following, the softening
of the stiffness and the strong nonlinear effects have a significant effect on the performance
of the new algorithm.

Recombination. As soon as the fuel has been consumed, the recombination zone starts
and persists up to the end of the integration domain (1 m). During this period,NO slowly
forms endothermically—the temperature in Fig. 4 decreases slightly—and reaches its equi-
librium value asymptotically. This zone is characterized by much slower scales than the
induction or reaction zones. As a result, the number of exhausted modes rises to 41–43 in-
dicating that an equal number of species are in quasi steady-state and that a reduced model
involving five to seven species, basically those related to the formation ofNOkinetics, can
be constructed.

Note that once the number of exhausted modes and the corresponding CSP vectors are
known, it is easy to compute the CSP data (i.e., steady-state pointer, participation, and



EXPLICIT ALGORITHM FOR STIFF PROBLEMS 67

FIG. 6. CSP’s convergence; fine dashed lines are the CSP solutions; and thick solid line is the LSODE
reference solution.

importance indices) which allow both to analyze the detonation structure and to construct
proper reduced mechanism as fully described in Refs. [37–39].

7.4.2. Accuracy of the New Algorithm

The evolution of the temperature and the error in the reaction and recombination regions
are shown in Fig. 6, for different values of the parameterα andεrel = 1.e− 5 andεabs=
1.e− 10. It is shown that asα decreases, the error reduces and the CSP solution converges
to the LSODE reference solution.

The space evolution of the error, displayed in Fig. 6, shows that its magnitude stays
within the bounds imposed and that its largest value occurs inside the reaction zone. In
this zone, where the solution exhibits the largest slopes, the CSP method encounters the
greatest difficulties. This is also demonstrated by the results displayed in Fig. 7, in which the
integration steps selected by LSODE and CSP are compared. It is shown that the steps are
remarkably similar inside the induction and recombination zones, despite the completely
different criterion upon which LSODE and the new algorithm make their decisions, whereas
the largest discrepancies are found inside the reaction zone. There the new algorithm takes
much smaller integration steps than LSODE.

7.4.3. Efficiency of the New Algorithm

The efficiency of the new algorithm can be assessed by inspecting the data summarized
on Table V, where the design parameters of the algorithm considered areεrel andα. Table V
clearly shows that:

• the new algorithm is approximately one order of magnitude slower than LSODE;
• the new algorithm is able to deliver an accuracy comparable to that of LSODE by

alteringεrel andα: the increased accuracy is obviously obtained at the expense of a higher
computational cost;
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FIG. 7. CSP vs LSODE integartion step size evolution.

• the ratio of the number of function and Jacobian evaluations for the new algorithm and
for LSODE scales almost proportionally to the the ratio of the CPU time required by the
two methods;
• the difference between the numberNje of Jacobian evaluations and the numberNst of

steps is equal to the number of times the resetting procedure (repetition of the integration
step), described with reference to Eq. (41), is enforced; the data of Table V demonstrate
that the conditions for resetting occur very rarely.

TABLE V

CSP-Based Algorithm Performance

Effect ofα; εrel = 1.e-5;εabs= 1.e-10

CPU CPU CPU CPU
α ind. reac. recom. tot. err Nst Nf e Nje

0.45 176 s 228 s 191 s 594 s−7.21e-04 1931 110946 1947
0.35 225 s 303 s 311 s 839 s−2.15e-04 2684 153867 2700
0.25 194 s 380 s 140 s 714 s−1.10e-04 2430 139830 2454
0.15 290 s 606 s 178 s 1070 s−2.23e-05 3760 215750 3786

Effect of εrel; α= 0.25;εabs= 1.e-10

CPU CPU CPU CPU
εrel ind. reac. recom. tot. err Nst Nf e Nje

1.e-4 302 s 414 s 182 s 898 s−4.57e-03 3080 178750 3138
1.e-5 194 s 380 s 140 s 714 s−1.10e-04 2430 139830 2454
1.e-6 64.2 s 308 s 217 s 590 s+5.41e-04 1910 110520 1940
1.e-7 68.8 s 738 s 506 s 1313 s+8.50e-06 4501 257657 4521
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7.4.4. Comments about Accuracy and Efficiency

The findings related to both the accuracy and the computational efficiency of the new
algorithm should not be surprising. The new algorithm, apart from the error caused by the
explicit scheme employed for the integration of the slow components of the derivatives,
introduces an additional error produced by the higher order terms omitted which are related
to the exhausted fast scales.

Inside the reaction zone, where the strongest nonlinearities and the largest slopes of
the solution appear, two kinds of problems occur. First, the negligence of the derivative
terms in the formulas for computing the basis vectors, i.e., Eqs. (17) and (18), is not such
a valid assumption. As a result, the full dimensions of the manifold cannot be identified.
Fewer exhausted modes are identified and the integration there proceeds with a time step
much smaller than the local characteristic time scale, thus slowing down the computations.
Second, the functionf (y) in the expression for the local error produced by the slow part
integration (Eq. (42)) attains the maximum values, causing a deterioration of the solution
accuracy. Both these effects are easily recognized in the results displayed in Figs. 6 and 7.
These results indicate that the new algorithm will be especially successful when dealing
with very stiff and quasi-linear problems.

7.5. A Hybrid Approach

The results showed that the new algorithm, consistently with the assumptions of the theory
upon which it is build, performs better in regions of high stiffness and worse elsewhere.
Thus, a test has been carried out in which the ODEs are integrated by using the new
explicit scheme everywhere but in the reaction zone wherein LSODE is used instead. The
performance obtained by this “hybrid” procedure is reported in Table VI.

By comparing the data in Table VI with those obtained by using the new algorithm
throughout the whole domain (Table V) reveals that:

• the new algorithm takes most of the time to compute (not very accurately) the flame
zone;
• the accuracy provided by the new algorithm in the induction and recombination zone

is very high even when largeα (up to 0.9) are used;
• inside the recombination zone, the CPU time is still high because there are up to 43

exhausted modes to be found at each integration step.
Now consider that for most applications of engineering interest, the reaction zone (or

zones) covers only a minute fraction (however important) of the whole domain of integration,

TABLE VI

Performance of the Hybrid Calculation

Effect of εrel ; εabs = 1.e− 10;α = 0.90

CPU CPU CPU CPU
εrel ind. reac. recom. tot. err Nst

1.e-4 25 s 15 s 157 s 197 s −1.56e-04 934
1.e-5 31 s 16 s 224 s 271 s −7.66e-07 1119

Note.(i) CSP-based algorithm used everywhere but in the flame,
and (ii) LSODE’s package used in the flame.



70 VALORANI AND GOUSSIS

and that almost the whole flowfield is affected by stiffness. In view of solving these kinds
of PDEs problems, this test suggests the following tentative strategy:
• to use LSODE, or a stabilized explicit scheme such as a RKC scheme, in the flame

(where the problem is mildly stiff);
• to use CSP (after having improved its speed) elsewhere where the problem is very stiff.

8. DISCUSSION OF THE RESULTS

The findings illustrated in the previous section lead to different conclusions, depending
on whether one wishes to solve an ODE or a PDE problem. Therefore, the discussion will
be done separately for the two options.

8.1. Discussion for ODEs Problems

Comparing the findings of Table V to those of Table IV pointed out that one of the main
reasons that makes the new algorithm less performing (in terms of computational efficiency)
than LSODE is recomputing the Jacobian at each integration step.

In contrast, LSODE updates the Jacobian (and sometimes only an approximation of the
Jacobian) only once over an average of 5–10 time steps. LSODE can adopt this strategy
because it exploits the knowledge of the solution and of the Jacobian at previous inte-
gration steps to both update the new Jacobian and to take a decision about the order of
accuracy of the scheme of integration (LSODE is a variable order, variable step, mul-
tistep, implicit algorithm). Overall, this makes LSODE a very efficient solver for ODE
problems.

Instead, the new algorithm in the present form is a one-step, fixed-order, variable-step
explicit scheme. Therefore, it cannot take advantage of the past history of the solution as
does LSODE. The price paid is a higher number of function and Jacobian evaluation.

A further source of computational work for the new algorithm is the refinement procedure
which is not required by LSODE. A profiling analysis of the code showed that the most CPU
time-demanding calculations of the new algorithm are the two matrix products required to
deflate the Jacobian from left and right.

However, LSODE must solve a set of linear equations for the implicit formulation,
whereas the new algorithm has not. Therefore, for the new algorithm to become competitive,
it is important to bring the cost of the refinement procedure down to the same level of the
cost to solve the set of linear equations needed by the implicit formulation.

Last but not least, the coding of the new algorithm in its present form is far from being
optimal, and it is definitely less efficient than the highly optimized and extensively tested
LSODE package. Consider as an example, that the CPU time decreased by a factor of 3
simply by carrying out the matrix multiplications with the help of a routine optimized for
processors provided with a cache memory.

8.2. Discussion for PDEs Problems

The standard way to integrate numerically a stiff PDE problem involves first an operator
splitting which allows the integration of the stiff source term separately from the spatial
differential operators (convection and diffusion) by using the stiff schemes embodied in
LSODE (or later versions of it [9]).
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The performance of LSODE in this context is much poorer than that achievable when
solving ODE problems. This happens for the following reasons:

• The Jacobian at past times is not available anymore, and, therefore, it ought to be
recomputed at each step and space location as done in the CSP algorithm, because (i) to
save it at different time levels and at each space location would result in unmanageable
large storage requirements, and (ii) for unsteady calculations involving traveling waves, it
is not possible to extrapolate the new Jacobian from those evaluated at past times but at
a fixed space location. Thus, the number of Jacobian evaluations for LSODE and the new
CSP algorithm in a PDE problem will become of similar order of magnitude.
• Since LSODE is a multistep scheme, its starting step procedure is much more expensive

as compared to the cost of the time steps that follow. In fact, not only the lack of past Jacobians
forces the procedure to recompute the full Jacobian, but also the variable step/variable-
order features become either unavailable or more expensive when envisioned for the first
step. Unfortunately, and for the same reasons explained above, each integration of the stiff
operator of a split PDE problem has to be carried out as if composed of all and only first
steps.

To quantify the loss of LSODE’s efficiency under these circumstances, we attempted to
emulate how LSODE would operate in a PDE context using an ODE model. This can be
achieved by forcing LSODE to reset the control parameteristateequal to 1 at the beginning
of each integration step; in so doing, all internal arrays of LSODE, including previous values
of the local Jacobian matrix, are cleared.

In a real PDE problem, the integration time-step size is determined on the basis of a
CFL number criterion. Given this time step, when LSODE takes over, the integration of
the stiff part of the PDE along the CFL-determined time step is performed with a num-
ber of smaller steps, determined by the method itself so that the prespecified accuracy is
respected. In the numerical test performed in order to test the efficiency of LSODE in a
PDE environment using an ODE problem, we had to provide LSODE the time step se-
quence, since no spatial operator is actually present in the set of ODEs considered here.
Two different sequences have been considered (see Fig. 7); the one generated by LSODE
when it works in the standard mode (the method chooses the time step using the solution
history) and the one generated by the CSP new algorithm, with a time step defined as the
locally fastest of the slow time-scales. The numerical test allowed us to draw the following
conclusions:

• As the results displayed in Fig. 8 show, by forcing a new start at the beginning of each
(externally supplied) time step, LSODE starts the integration with a very small substep. The
size of this substep quickly recovers to that attained by the standard mode of integration.
However, no matter how quick this recovery might be, this process of integration causes a
severe loss of efficiency when compared to its standard mode of operation.
• As the data shown on Table VII indicate, the PDE operation mode on LSODE causes

the evaluation of the Jacobian a very large number of times. This development, which is the
major cause for the loss in efficiency, is due to the fact that the new start at the beginning
of each time step clears out the memory of all previous steps and that the data required by
the method to march have to be computed anew.
• The overall effect of the PDE operation mode of LSODE is to increase dramatically

the CPU time needed to complete the integration. As Table VII shows, the 36 s for the
LSODE operation in an ODE mode grow up to 811 s (or 1598 s) for the operation in a PDE
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FIG. 8. Integration step size evolution as: (i) generated by LSODE with variable step control (continuous
line) and (ii) prespecified integration step size sequence simulating operator splitting mode of integration (short
lines).

mode, when the supplied time step sequence is provided by LSODE when it operates in an
ODE mode (or by the CSP new algorithm).

On the other hand, the CSP-based algorithm only requires a limited amount of information
made available from the previous integration step (although it does not strictly need it), that
is, a CSP basis to be used as a first guess in the refinement procedure. This is easily available
in PDE problems as well as in ODEs. In this perspective, the CSP-based algorithm can be
classified as a self-starting scheme.

To conclude, the performance of LSODE in ODE problems, for a number of reasons,
is better than that of the new scheme. However, this result cannot be safely extrapolated
to PDE problems, where most of the advantages enjoyed by LSODE, when dealing with
ODEs, disappears.

The extension of the new CSP-based scheme to PDE problems is the subject of ongoing
research. Note, however, that other integration schemes, suited to integrate the stiff PDEs,
are available (see a review in Ref. [11]), which are more efficient than LSODE in dealing
with stiff PDEs, although less competitive than LSODE on a single, long-term integration.

TABLE VII

LSODE’s Performance with Variable and Two Prespecified Integration

Step Size Sequences

CPU
dt rtol atol tot. err Nst Nf e Nje

Variable step 1.e-6 1.e-14 36 s+3.83e-06 1,010 12,492 210
LSODE sequence 1.e-6 1.e-14 811 s+1.78e-06 9,839 292,921 5,320
CSP sequence 1.e-6 1.e-14 1598 s 9.32e-06 18,514 621,524 11,335

Note.One sequence generated by LSODE working in the standard variable step size mode,
and the other by the CSP-based algorithm.
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Therefore, the new time-scale split algorithm should be confronted with these others as well
as with LSODE.

9. CONCLUSIONS AND FUTURE DIRECTIONS

A new explicit algorithm based on the CSP concepts has been developed and its per-
formance has been compared against that delivered by the LSODE package. The results
demonstrated that (i) the accuracy of the new algorithm is comparable to that provided by
LSODE; (ii) the stability limitations of the conventional explicit schemes have been fully
circumvented; and (iii) the computational efficiency of the code (algorithm plus coding) is
still non satisfactory.

The possible directions to improve the computational efficiency have been identified:
(i) the number of Jacobian evaluations and the number of times a new CSP basis must be
updated have to be reduced, (ii) the cost of each refinement must be reduced, and (iii) the
coding of the package must be optimized.

Before closing this paper, it seems appropriate to address the issue of how the explicit
scheme could be extended to solve stiff PDEs problems, and why this might result in a
better strategy as opposed to the standard operator (or time-step) splitting approach.

The explicit time-scale splitting should in principle be able to provide a direct coupling
of the spatial scales with the slow time-scales originated by the source term, when the fast
time-scales are due to the source term only.

The likely advantages of the time-scale splitting compared to the time-step splitting are
the following:

• The time-scale splitting should allow the use of an explicit algorithm thus eliminating:
—the need for locally implicit or multistep scheme;
—the solution of nonlinear systems at each integration step; and
—the extra storage associated to a multi-step scheme.
• The time-scale splitting provides an estimate of the order of magnitude of the local

driving time-scale obtained by accounting for both convection, diffusion, and reactions.
This estimate can be used:

—to adjust (maximize) the integration step for time marching; and
—to set the proper spatial discretization (grid resolution).

APPENDIX: THE PHYSICAL MODEL

This appendix describes the thermochemical model, the chemical kinetic model, and the
conservation laws used in this work.

A.1. Thermo-Chemical Model

The mixture is composed of thermally and calorically perfect gases. The thermal equa-
tion of state for the mixture is formally identical to the one valid for a single ideal inert
gas,

p =
∑

i

pi =
(∑

i

ρi

)
RT = ρRT. (A.1)



74 VALORANI AND GOUSSIS

The mixture pressurep and densityρ are defined in terms of partial pressurespi and
densitiesρi ; the mixture gas constantR is defined by the relationR=∑i (R/M)yi =∑

i Ri yi , whereR is the universal gas constant,Mi are the molecular weights of the mixture
species, andyi are the species mass fractions. The reactive mixture of gases is considered
to be in thermal equilibrium. Thus, the translational and rotational energies are accounted
for as being fully excited at the temperatureT , whereas vibration is in equilibrium.

The caloric equation of state is formulated by expressing the mixture enthalpyh in terms
of the species enthalpieshi ,

h =
∑

i

hi (T)yi , (A.2)

where

hi (T) = 1h◦fi (T0)+
∫ T

T0

cpi (T) dT. (A.3)

The mixture is not calorically perfect because the enthalpy is a function of both temper-
ature and mixture composition.

The entropy of the mixture is defined on the basis of the species entropies defined as

s◦i (T) = 1s◦fi +
∫ T

T0

cpi (T)
dT

T
(A.4)

si (T, pi ) = s◦i (T)− Ri ln (pi /p0). (A.5)

The species entropiessi depend on the partial pressurepi as well as on temperatureT .
For the mixture, we have

s◦f (T, yi ) =
∑

i

s◦i (T)yi (A.6)

s(T, p, yi ) = s◦f − R

[
log(p/p0)+

∑
i

xi logxi

]
, (A.7)

where the partial pressurespi are expressed in terms of the mixture pressurep and the
mole fractionsxi . The formation enthalpy1h◦fi (T0) and entropy1s◦fi (T0) are evaluated at
standard conditions.

The appropriate sound speed for models of thermal equilibrium and chemical nonequi-
librium is the frozen sound speed defined asa2 = γ p/ρ, whereγ is the ratio between the
(frozen) specific heatscp andcv of the mixture

γ =
(∑

i

cp,i yi

)/(∑
i

cv,i yi

)
= cp/cv.

A.2. Chemical Kinetic Model

Let theNs species forming the gaseous mixture be formed byNe different elements. The
expressionXi denotes the chemical formula of thei -th species, composed byNe elementsE j

Xi = E1
a1,i

E2
a2,i
· · · ENe

ae,i
i = 1, Ns.
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The subscriptaj,i is the number of atoms of the elementE j in the speciesXi . The set of
reactions defining a kinetic model can be identified by theNr symbolic relations

Ns∑
i=1

ν ′i,k Xi ⇀↽

Ns∑
i=1

ν ′′i,k Xi k = 1, Nr , (A.8)

whereNr is the number of different reactions occurring among theNs species;ν ′i,k andν ′′i,k
are the stoichiometric coefficients of reactants and products, respectively.

The rate at which thek-th reaction progresses in time is quantifiable with the relation

r k= K k
f

[
Ns∏

i=1

c
ν ′i,k
i −

(RT)
∑

i (ν ′′i,k − ν ′i,k)
K k

p

Ns∏
i=1

ci
ν ′′i,k

]
= r k

f − r k
b, (A.9)

where the forward rate constant is in Arrhenious form

K k
f = BkTαk exp(−Ek/RT), (A.10)

whereEk è is the activation energy, andBk is the steric factor. The equilibrium constantK k
p

is evaluated as

K k
p(T)

def= exp

(
−
∑Ns

i (ν
′′
i,k − ν ′i,k)µ◦i
RT

)
. (A.11)

In these relations, the chemical potentialµ◦i = hi − T s◦i is evaluated under equilibrium
conditions (NASA polynomials).

The net rate of production of thei -th speciesċi resulting from the simultaneous action
of the Nr reactions can be evaluated with the relations

ċi =
Nr∑

k=1

(
ρψ

M

)lk

(ν ′′i,k − ν ′i,k)r k. (A.12)

The exponentlk is equal to one when the reaction includes third bodies, and zero else-
where. Third body efficienciesψi are combined into the termψ =∑i ψi xi ;M =

∑
i Mi xi

is the molecular weight of the mixture. The chemical kinetic model for the system methane/
air can be found in [50].

A.3. Reactive Euler Equations

On the basis of dimensional estimates, it is possible to safely neglect all transport phe-
nomena in the flow regimes characteristic of detonation waves. The gas dynamics of reactive
flows can be adequately described by the reactive Euler equations, i.e., the set of mass, mo-
mentum, and energy conservation laws formally identical to the one valid for an inert gas

Dρ

Dt
+ ρ∇ · q = 0 (A.13)

ρ
Dq
Dt
+∇ p = 0 (A.14)

ρ
Dh

Dt
− Dp

Dt
= 0, (A.15)
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whereq is the flow velocity vector, plus a set of rate equations for the production and
consumption of chemical species

Dρi

Dt
+ ρi∇ · q = ρ̇ i i = 1, Ns, (A.16)

whereρ̇i is the production rate of thei -th species. The set is closed by the thermal and
calorical equations of state. By combining the definition of partial density(ρi = yiρ), with
the conservation of the total mass, we can recast the conservation of thei -th species in terms
of mass fractions

Dyi

Dt
= ρ̇i

ρ
i = 1, Ns, (A.17)

whereρ̇i is the rate of production on a mass basis. The rate of production on a molar basis
ċi is related toρ̇i by ρ̇i = ċiMi . Thus, we obtain the equations

Dyi

Dt
= ċiMi

ρ
= ẏi i = 1, Ns, (A.18)

expressing the transport and production of species mass fractions.
Differentiation of the thermal equation of state (A.1) yields

dρ

ρ
= d log(p)− dh

cp
+
∑

i

(
Ri

R
− hi

cpT

)
dyi , (A.19)

wherecp is the specific heat at constant pressure of the mixture. The differential of the static
enthalpy in Eq. (A.19) can be expressed in terms of differential of pressure by using the
conservation law of total enthalpy (Eq. (A.15)), and the resulting relation can be substituted
in the conservation law of the total mass of the mixture (Eq. (A.13)) to yield

DP

Dt
+ γ∇ · q = −γ

∑
i

(
Ri

R
− hi

cpT

)
dyi . (A.20)

Moreover, the pressure gradient∇ p in Eq. (A.14) can be expressed in terms of gradient
of the pressure logarithm∇P = ∇(log(p)) to cast the conservation law of momentum into
the equivalent form

Dq
Dt
+ a2

γ
∇P = 0. (A.21)

Finally, the conservation law of total enthalpy (Eq. (A.15)) can be replaced by the equation
expressing the entropy production resulting from chemical reactions [46, 47]:

Ds

Dt
= − 1

T

Ns∑
i=1

µi ẏi , (A.22)

where the chemical potential of thei -th species is defined asµi (T, pi ) = hi (T)−
T si (T, pi ).
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